首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the geometry and kinematics of the faults exposed in basement rocks along the Strouma River in SW Bulgaria as well as the sequence of faulting events in order to place constraints on the Cenozoic kinematic evolution of this structurally complex domain. In order to decipher the successive stress fields that prevailed during the tectonic history, we additionally carried out an analysis of mesoscale striated faults in terms of paleostress with a novel approach. This approach is based on the P–T axes distribution of the fault-slip data, and separates the fault-slip data into different groups which are characterized by kinematic compatibility, i.e., their P and T axes have similar orientations. From these fault groups, stress tensors are resolved and in case these stress tensors define similar stress regimes (i.e., the orientations of the stress axes and the stress shape ratios are similar) then the fault groups are further unified. The merged fault groups after being filled out with those fault-slip data that have not been incorporated into the above described grouping, but which present similar geometric and kinematic features are used for defining the final stress regimes. In addition, the sequence of faulting events was constrained by available tectonostratigraphic data.Five faulting events named D1, D2, D3, D4 and D5 are distinguished since the Late Oligocene. D1 is a pure compression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the WNW-ESE to ENE-WSW faults as reverse to oblique reverse and the NNW-SSE striking as right-lateral oblique contractional faults during the Latest Oligocene-Earliest Miocene. D2 is a strike-slip − transpression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the NNW-SSE to N-S striking as right-lateral strike-slip faults and the ENE-WSW striking faults as left-lateral strike-slip ones during the Early-Middle Miocene. D3 extensional event is associated with a NW-SE to WNW-ESE extension causing the activation of mainly low-angle normal faults of NE-SW strike and NNE-SSW to NNW-SSE striking high-angle normal faults. D4 is an extensional event dated from Late Miocene to Late Pliocene. It activated NNW-SSE to NW-SE faults as normal faults and E-W to WNW-ESE faults as right-lateral oblique extensional faults. The latest D5 event is an N-S extensional stress regime that dominates the wider area of SW Bulgaria in Quaternary times. It mainly activated faults that generally strike E-W (ENE-WSW and WNW-ESE) normal faults, along which fault-bounded basins developed. The D1 and D2 events are interpreted as two progressive stages of transpressional tectonics related to the late stages of collision between Apulia and Eurasia plates. These processes gave rise to the lateral extrusion of the Rhodope and Balkan regions toward the SE along the Strouma Lineament. The D3 event is attributed to the latest stage of this collision, and represents the relaxation of the overthickened crust along the direction of the lateral extrusion. The D4 and D5 events are interpreted as post-orogenic extensional events related to the retreat of the Hellenic subduction zone since the Late Miocene and to the widespread back-arc Aegean extension still prevailing today.  相似文献   

2.
红河断裂带第四纪右旋走滑与尾端拉张转换关系研究   总被引:29,自引:4,他引:29       下载免费PDF全文
虢顺民  向宏发 《地震地质》1996,18(4):301-309
红河断裂带早第四纪以来发生的大规模右旋走滑运动,导致断裂北段尾端的质量亏损,形成了拉张区。右旋走滑量为7.1km左右,拉张区右旋方向上的扩张量为5.35km左右,二者相互转换的量级是基本一致的,从而定量地证实了它们之间的成因联系  相似文献   

3.
A structural field study was made of 578 sheet intrusions (mostly dykes) and 153 (mostly normal) faults dissecting the Anaga and Teno massifs, where a complex volcanic succession of Tertiary age (the ‘Old Basaltic Series’) representing the shield-building stage of Tenerife (Canary Islands) crops out. Many of the intrusions, mostly sub-vertical mafic dykes, are emplaced by multiple magma injections, with cumulative thicknesses mostly less than 2 m. Dyke tips are exposed and preserved for 12% of the dykes. Three differently oriented sets of dykes exist in the Anaga massif (NNW–SSE, NNE–SSW, E–W), whereas there is only one main set in Teno, trending NNW–SSE. Dyke swarms and other structural features having similar orientations also exist in other Canary Islands. A minimum value of the horizontal component of extension induced by dykes is computed using a step of 5° of azimuth, accounting also for the dip of dykes. The cumulative crustal dilation is at least 300 m (4%) in Anaga and 270 m (6%) in Teno; the maximum extension peaks at N75° in Anaga and N60° in Teno, indicating a general prevailing extension in direction ENE–WSW. Most of the measured faults are normal and strike NNW–SSE. Computation of palaeostresses from inversion of fault-slip data sets suggests the existence of a polyphase brittle deformation due to an extensional stress field with the minimum compressive principal axes trending NE–SW and WNW–ESE.  相似文献   

4.
On the southeast coast of Fujian and its adjacent area, the NE-trending Changle-Zhao′an fault zone and several NW-trending faults that are genetically related to the former are well developed. With micro-relief analysis, the paper deals with the Quaternary activity of the faults and the tectonic stress field since the late Pleistocene in this region. The results indicate that the micro-relief of the NE-trending Changle-Zhao′an fault zone and the genetically related NW-trending faults is characterized by vertical and horizontal movements since the Quaternary; the faults in the region have undergone two active stages since the Quaternary, i.e. early Quaternary and late Pleistocene; since the late Pleistocene, the movement of the NE-trending faults showed a right-lateral strike-slip, while that of NW-trending faults a left-lateral strike-slip, indicating a NWW-SEE oriented horizontal principal stress of the regional tectonic stress field  相似文献   

5.
The late Neogene to Quaternary volcanism in Eastern Anatolia is related to the Arabia–Eurasia convergence but a clear deformation pattern has not yet been established in this region. We have used the distribution and shape of volcanoes and fault geometry as indicators of the tectonic regime. Volcanic edifices and related faults were analyzed in vertical view using SAR–ERS, Spot images and a Digital Elevation Model (DEM). In several places, adjacent volcanoes that form linear clusters or elongated volcanoes are clearly rooted on vertical tension fractures. These are compatible with horizontal σ3 striking 90°N, associated with σ1 horizontal (strike-slip regime) or vertical (extensional regime). We mapped the recent faults that are directly associated to volcanoes. Volcanic vents are related to tail-crack, horsetail or releasing bend structures. In this work, it has been possible to define the ESE-striking, 270-km-long Tutak–Hamur–Çaldiran fault that forms a releasing bend testifying to right-lateral motion. Extension is well documented for few places but no recent fold has been observed. Since 8 Ma, the tectonic system is principally strike-slip. Most of the tension fractures being 2 to 10 km in length, so we infer that they affect only part of the crust. Most strike-slip fault zones are of several tens to a few hundred kilometers long and thus not of lithospheric scale. Therefore, the channels used by the magma to reach the surface are crustal structures.  相似文献   

6.
The morphotectonic framework of the Central Apennines is given by faulted blocks bounded by normal faults, mostly trending NW–SE, NNW–SSE and NE–SW, which cut previous compressive structures. Such a structural setting is consistent with the focal mechanisms of the earthquakes which often occur in this area. In this paper, three lithologically different normal fault-generated mountain fronts are analysed in order to assess the relations between their geomorphic features and active tectonics. They border the Norcia depression (Sibillini Mts, Umbria), the Amatrice–Campotosto plateau (Laga Mts, Lazio) and the Fucino basin (Marsica Mts, Abruzzi). The Norcia depression is bounded by a N20°W trending normal fault to the east and by a parallel antithetic fault to the west. The main fault has a 1000 m throw and gives rise to a wide fault escarpment, characterized by: (1) sharp slope breaks due to low angle gravity faults; (2) important paleolandslides; and (3) several fault scarplets on the piedmont belt affecting Quaternary deposits. The Amatrice–Campotosto plateau is delimited by the western slope of Mt Gorzano which runs along a N20°W trending normal fault having a 1500m throw. Minor parallel faults dislocate Quaternary landforms. Large-scale massmovements also occur here. The Fucino basin was struck by the 1915 Avezzano earthquake (I=XI MCS) which produced extensive surface faulting along two parallel NW trending normal fault escarpments on the eastern border of the basin. There is paleoseismic evidence including buried gravity graben in Late Glacial gravels and tectonic dip-slip striations on Holocene calcitic crusts covering bedrock normal fault planes. These data suggest that active extensional tectonics plays a major role in the slope morphogenesis of the Central Apennines and they indicate the importance of geomorphic analysis in seismic zonation of this area.  相似文献   

7.
福建东南沿海及邻区活动断裂的微地貌研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对福建东南沿海及邻区活动断裂进行了微地貌学分析,研究了区内断裂构造第四纪以来的活动特征,并探讨了晚更新世以来的区域构造应力场.结果表明:北东向的长乐—诏安断裂带和与之具有成生联系的北西向断裂,第四纪以来具有垂直运动和水平运动的特征;主要有两个明显的活动期,即早、中更新世和晚更新世;晚更新世以来,北东向断裂具右旋水平滑动,北西向断裂具左旋水平滑动,显示出北西西—南东东向水平挤的区域构造应力场.  相似文献   

8.
Introduction The Tanlu fault zone, the largest active structure in the eastern region of China, is character-ized by right lateral strike-slip movement with dip-slip component in the Quaternary; it shows great significance for the modern seismicity (FANG et al, 1976; Institute of Geophysics, China Earthquake Administration, 1987; GAO et al, 1980; MA, 1987; LI, 1989; CHAO et al, 1995). The Tanlu fault zone is the boundary between the Jiaoliao block and the North China Plain block of …  相似文献   

9.
根据详细的野外调查和剖面测绘成果,结合区域第四系测年结果等资料,对龙蟠—乔后断裂带桃源段新发现的桃源断裂、刀郭断裂、合江村断裂及已知的龙蟠—乔后断裂等4条主要断裂的晚第四纪活动特征进行研究。成果表明,龙蟠—乔后断裂带桃源段在晚第四纪的活动特征明显,活动强度中等,龙蟠—乔后断裂和合江村断裂属全新世活动断裂,桃源断裂和刀郭断裂属晚更新世断裂;晚更新世以来,龙蟠—乔后断裂和刀郭断裂以左旋走滑运动为主,而桃源断裂和合江村断裂则表现为正断走滑为主。这些断裂的活动性都不同程度地影响着研究区及附近区域的地震风险和构造稳定性。新的调查研究成果为深入认识龙蟠—乔后断裂带桃源段的晚第四纪活动性提供了新的资料,并可为深入理解该区的地震地质特征以及工程建设地震安全性评价等提供基础地质资料。  相似文献   

10.
Based on the interpretation of 3D seismic data and structural mapping we analyzed the geometry and kinematics of the fault system and validated the expression of the “Tan-Lu Fracture Zone” in the West Sag of Liaohe Depression, Bohaiwan basin province. The Cenozoic structural deformation within the West Sag of Liaohe Depression can be divided into extensional structure system and dextral structure system. The extensional system is constituted by numerous NNE-NE trending Paleogene normal faults, where the Taian-Dawa fault (F1) is the master boundary fault (MBF) dominating the deposition during Paleogene so that the sag shows a complex half-graben with “boundary fault in the east and overlap in the west”. The dextral system is constituted by 2–3 dextral basement faults in NNE-NE trending (F2, F3, F4) and associated structure, and the time of structural action started in Oligocene and continued to Quarternary so that some associated secondary faults of the dextral system cut off the Neogene and Quaternary. Under the influence of the position and attitude of NNE-NE trending basement strike-slip faults, the central north part and the south part of the West Sag show obviously different structural features. The former appears to be a complex “graben” structure limited by the reversed strike-slip fault in the west and bounded by the inverted normal fault in the east, the latter remains the complex half-graben structure with “boundary fault in the east and overlap in the west”, and the graben was mildly reconstructed by one or two normal strike-slip faults. The dextral system within the West Sag is the element of the west branch fault of the Tan-Lu Fracture Zone, which is a deep fracture zone extending along the east of the Liaodongwan Gulf. The deep fracture zone branches off into two separate faults within the Liaohe Depression. The east branch goes through from northern part of the Liaodongwan Gulf to the East Sag of Liaohe Depression and links with the Denghua-Mishan Fault near Shenyang, and the west branch passes from northern part of the Liaodongwan Gulf to the West Sag and Damintun Sag of Liaohe Depression and links with the Yilan-Yitong Fault. The principal displacement zone of the west branch of the Tan-Lu Fracture Zone cuts off the master extensional fault (F1) within the West Sag of Liaohe Depression and induces many cover faults in EW trending within the Neogene and Quaternary.  相似文献   

11.
莱州湾海域郯庐断裂带活断层探测   总被引:21,自引:0,他引:21       下载免费PDF全文
利用浅地层剖面仪对郯庐断裂带莱州湾段进行了活断层探测,发现郯庐断裂带主干断裂在第四纪晚期以来具有明显的活动,继承了晚第三纪以来的主要构造活动特点,仍是这一区域的主导性构造. 西支KL3断裂由多条高角度正断裂组成,最新活动时代为晚更新世晚期至全新世早期,受到一系列错断晚更新世晚期沉积的北东或近东西向断裂的切割;东支龙口断裂由两段右阶斜列的次级断层组成,沿断裂带不但有明显的晚第四纪断错活动,而且还发育北北东向晚第四纪生长褶皱,表现出明显的晚更新世晚期至全新世活动特征. 在山东陆地区也发现了与龙口断裂相对应的安丘——莒县断裂,安丘段由一系列右阶斜列的次级断层组成. 从安丘向北至莱州湾凹陷,郯庐断裂带东支活断层构成了一条右旋单剪变形带,每一个次级活断层段相当于带内理论上次级压剪面,在第四纪晚期以来仍以右旋走滑活动为主要特征.   相似文献   

12.
A detailed investigation of microseismicity and fault plane solutions are used to determine the current tectonic activity of the prominent zone of seismicity near Samos Island and Kusadasi Bay. The activation of fault populations in this complex strike-slip and normal faulting system was investigated by using several thousand accurate earthquake locations obtained by applying a double-difference location method and waveform cross-correlation, appropriate for areas with relatively small seismogenic structures. The fault plane solutions, determined by both moment tensor waveform inversions and P-wave first motion polarities, reveal a clear NS trending extension direction, for strike slip, oblique normal and normal faults. The geometry of each segment is quite simple and indicates planar dislocations gently dipping with an average dip of 40–45°, maintaining a constant dip through the entire seismogenic layer, down to 15 km depth.  相似文献   

13.
This paper deals with the geometry and kinematics of the active normal faults in northern Umbria, and their relationship with the seismicity observed in the area. In particular, we illustrate the contribution of seismic reflection data (a network of seismic profiles, NNW–SSE and WSW–ENE trending) in constraining at depth the geometry of the different active fault systems and their reciprocal spatial relationships. The main normal fault in the area is the Alto Tiberina fault, NNW trending and ENE dipping, producing a displacement of about 5 km, and generating a continental basin (Val Tiberina basin), infilled by up to 1500 m with Upper Pliocene–Quaternary deposits. The fault has a staircase trajectory, and can be traced on the seismic profiles to a depth of about 13 km. A set of WSW-dipping, antithetic faults can be recognised on the profiles, the most important of which is the Gubbio fault, bordering an extensional Quaternary basin and interpreted as an active fault based on geological, geomorphologic and seismological evidence. The epicentral distribution of the main historical earthquakes is strictly parallel to the general trend of the normal faults. The focal mechanisms of the major earthquakes show a strong similarity with the attitude of the extensional faults, mapped at the surface and recognised on the seismic profiles. These observations demonstrate the connection between seismicity in the area and the activity of the normal faults. Moreover, the distribution of the instrumental seismicity suggests the activity of the Alto Tiberina fault as the basal detachment for the extensional tectonics of the area. Finally, the action of the Alto Tiberina fault was simulated using two dimensional finite element modelling: a close correspondence between the concentration of shear stresses in the model and the distribution of the present earthquakes was obtained.  相似文献   

14.
The Reykjanes Peninsula rift zone in southwest Iceland is a highly oblique segment of the Mid-Atlantic ridge system which accommodates NW–SE extension during rifting episodes that consist of eruptions and normal faulting, and E–W left-lateral shear strain along strike-slip faults during longer amagmatic periods. Dominant tectonic features on the peninsula are a series of generally NE-striking, sub-parallel eruptive fissures and normal faults, and a cross-cutting zone of N–S striking, right-lateral strike-slip faults. The last series of rifting episodes ended in 1227, and a proposed 1,000 year cyclicity predicts the start of a new series of eruptions within the next 200 years. In order to more accurately characterize the nature of eruptions on the Reykjanes Peninsula, we present a new, spatially accurate map of the ∼2,350 year old Sundhnúkur crater row in the western part of the peninsula, which was examined in detail in order to determine the structural controls on crater row geometry and to understand the interactions that take place between eruptive fissures and pre-existing geological structures. Volcanism is sometimes influenced by small perturbations in the surroundings such as gravitational loading, topography, changes in crustal properties or the presence of fault zones, but there are few field examples showing how fissures are influenced by these pre-existing structures. We identify 27 fissure segments, ranging in strike from 006° to 053°, with varying spacing and overlap between them. Significant local variability in strike and stepping sense of segments occurs in proximity to topographic highs as well as within zones of faulting that pre-date the crater row. Strike also varies at the northern end of the crater row as it approaches a region of older crust at the rift margin. Our data support numerical and laboratory modeling results which show that local topography, pre-existing fractures and crustal properties influence the path taken by magma on its way through the shallow crust.  相似文献   

15.
Abstract Extensional basin formation and subsequent basin inversion in the southern area of the eastern margin of the Japan Sea were studied on the basis of the interpretation of seismic profiles (total length approximately 15 000 km) and the fossil analyses of 77 sea-bottom samples. Rift (Early to Early Middle Miocene), post-rift (Middle to Late Miocene), pre-inversion (Late Miocene to Pliocene) and inversion stages (Pliocene to Quaternary) were differentiated by the extension and contraction of the crust. Many small-scale rifts were formed in the Sado Ridge and the Mogami Trough during the rift stage, simultaneous with back-are spreading of the Japan Sea. Most of the rifts were east- or southeast-facing, rotational half-grabens bounded by west-dipping normal faults at their eastern boundaries. The syn-rift sequence can be divided into lower and upper units by an erosional surface. The sequences are presumed to be composed mainly of fining-upward sediments. The trend of most rifts is north-northeast with the remainder being of east-northeast-bias. The north-northeast trending rifts are distributed widely in the Sado Ridge and Mogami Trough and do not show an en échelon arrangement, suggesting that they were formed mainly by pure extension nearly perpendicular to the arc. The east-northeast trending rifts are presumed to have been developed by a north-northwest extension in the late rift stage, which may have accompanied a right-lateral movement in the eastern margin of the Japan Sea. During the post-rift stage, the rifts and adjacent horsts subsided and became covered by the post-rift sequence, characterized by parallel and continuous reflections. This suggested no significant tectonic movements in this period. In the pre-inversion stage many of the rifts subsided again, presumably because of down-warping due to weak compressional stress. The normal faults reactivated as reverse faults during the inversion stage due to an increase in compressional stress. Many of the rifts have been uplifted and transformed into east-vergent asymmetric anticlines. The basin inversion is greatest in the Sado Ridges and in the Dewa Bank Chain, while it is least developed in the Mogami Trough and in the western slope of the Sado Ridge, in which some normal faults have not been reactivated. The increase and decrease of the inversion corresponds to the peak and trough of undulation at an interval of about 50 km trending parallel to the arc.  相似文献   

16.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

17.
Analyses of structural and geomorphological data combined with remote sensing interpretation confirm previous knowledge on the existence of an extensional Quaternary tectonic regime in the Colfiorito area (Umbro-Marchean Central Apennines). This is characterized by a maximum principal axis of finite strain oriented approx. NE–SW, which is the result of a progressive deformation process due to pure and radial extension. Surface geological data, the crustal tectonic setting (reconstructed using a CROP 03 seismic reflection profile), and seismological data relative to the autumn 1997 Colfiorito earthquake sequence constrain the following seismotectonic model. We interpret the seismogenic SW-dipping low-angle normal fault pictured by seismic data as an inverted thrust ramp located in the basement at depth between 5 and 10 km. The surface projection of this seismogenic structure defines a crustal box within which high-angle normal faults are responsible for the deformation of the uppermost crust. The regional patterns of pre-existing basement thrusts therefore control the seismotectonic zoning of the area that cannot be directly related to the high-angle normal fault systems which cut through different crustal boxes; the latter system records, in fact, re-shear along pre-existing normal faults. Moreover, Quaternary slip-rates relative to high-angle normal faults in the Central Apennines are closely related to seismic hazard within each crustal box.  相似文献   

18.
1 An out-of-line northwest trending tectonic beltin the middle part of the Yanshan Orogenic Belt The tectonic framework of the intraplate YanshanOrogenic Belt is dominated by east-west and northeastextending structures as revealed by many geologists.There lies, however, a 100-km-long enigmatic out-of-line northwest extending tectonic complex in the mid-dle part of the Yanshan Orogenic Belt (fig. 1). Theresearch on the geometry, kinematics, timing of thiscomplex tectonic belt and its r…  相似文献   

19.
This study aims to contribute a possible explanation for magma migration within volcanoes located in contractional tectonic settings, based on field data and physically-scaled experiments. The data demonstrate the occurrence of large stratovolcanoes in areas of coeval reverse faulting, in spite of the widely accepted idea that volcanism can develop only in extensional/transcurrent tectonic settings. The experiments simulate the propagation of deformation from substrate reverse faults with different attitudes and locations into volcanoes. The substrate fault splits into two main shear zones within the volcano: A shallow-dipping one, with reverse motion, propagates towards the lower volcano flank, and a steeper-dipping one, with normal motion, propagates upwards. In plan view, the reverse fault zone is arcuate and convex outwards, whereas the normal fault zone is rectilinear. Structural field surveys at volcanoes located in contractional settings show similar features: The Plio–Quaternary Trohunco and Los Cardos–Centinela volcanic complexes (Argentina) lie above Plio–Quaternary reverse faults. The Late Pleistocene–Holocene El Reventador volcano (Ecuador) is also located in a coeval contractional tectonic belt. These volcanoes show curvilinear reverse faults along one flank and rectilinear extensional fracture zones across the crater area, consistent with the experiments. These data consistently suggest that magma migrates along the substrate reverse fault and is channelled along the normal fault zone across the volcano.  相似文献   

20.
The Azambuja fault is a NNE trending structure located 50 km NE of Lisbon, in an area of important historical seismicity. It is sited in the Lower Tagus Basin, a compressive foredeep basin related to tectonic inversion of the Mesozoic Lusitanian Basin in the Miocene. The fault is evident in commercial seismic reflection data, where it shows steep thrust geometry downthrowing the Cenozoic sediments to the east. It has also a clear morphological signature, presenting a NNE-SSW trending, east facing, 15 km long scarp, reaching a maximum height of 80 m. The fault scarp is the geomorphic appearance of a flexure expressed as a zone of distributed deformation, where Miocene and Pliocene sediments are tilted eastwards and are cut by steeply dipping meso-scale faults presenting reverse and normal offsets, with a net downthrow to the east. This pattern at the surface is compatible with a steep fault in the basement that tilts and branches through the overlying Cenozoic sedimentary cover. In order to constrain the neotectonic activity of this structure, detailed geological studies were conducted. Morphotectonics was studied through aerial photo interpretation, analysis of topographic maps and digital mapping. Those studies indicate Quaternary slip on the fault in the ranges of 0.05–0.06 mm per year. Seismogenic behaviour was assumed for the Azambuja fault based on the evidence of Quaternary tectonic activity and its location in an area of significant historical seismicity. M w 6.4–6.7 maximum earthquakes, with recurrence intervals of 10000–25000 years, were estimated based upon the displaced morphological references, cumulative offsets and fault length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号