首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于半解析模型和SDSS DR4(Sloan Digital Sky Survey Data Release 4),研究了环境对星系性质的影响.通过对以颜色、恒星形成率和恒星质量的带权重的相关函数的测量,发现半解析模型在颜色和恒星质量上与SDSS数据符合得比较好,而恒星形成率则在SDSS数据中表现为与环境无关.此结论证实了半解析模型对星系中部分性质与环境关系的预测,但对于恒星形成率为何与环境无关仍有待研究.  相似文献   

2.
基于COSMOS(Cosmic Evolution Survey)/Ultra VISTA(Ultra-deep Visible and Infrared Survey Telescope for Astronomy)场中多波段测光数据,利用质量限选取了红移分布在0z3.5的星系样本.通过UVJ(U-V和V-J)双色图分类判据将星系分类成恒星形成星系(SFGs)和宁静星系(QGs).对于红移分布在0z1.5范围内且M*1011M⊙的QGs来说,该星系在样本中所占比例高于70%.在红移0z3.5范围内,恒星形成星系的恒星形成率(SFR)与恒星质量(M*)之间有着很强的主序(MS)关系.对于某一固定的恒星质量M*来说,星系的SFR和比恒星形成率(s SFR)会随着红移增大而增大,这表明在高红移处恒星形成星系更加活跃,有激烈的恒星形成.相对于低质量的星系来说,高质量的SFGs有较低的s SFR,这意味着低质量星系的增长更多的是通过星系本身的恒星形成.通过结合来自文献中数据点信息,发现更高红移(2z8)星系的s SFR随红移的演化趋势变弱,其演化关系是s SFR∝(1+z)0.94±0.17.  相似文献   

3.
使用了目前最大的棒旋星系样本之一,着重于研究旋涡星系中央的比恒星形成率(sSFR)和棒结构的关系。我们用1g sSFR=-11 a~(-1)作为星系宁静态和活跃态的分界,统计对比了棒旋星系和非棒旋星系中央的sSFR,发现相对于非棒旋星系,棒旋星系处于中央宁静态的比重更大,而在中央活跃态其恒星形成活动更剧烈。为消除星系样本恒星质量差异对星系中央sSFR统计结果的影响,获得控制样本,使棒旋星系和非棒旋星系具有相同的恒星质量分布。随后发现这两类星系在中央宁静态中的统计差异消失,而在中央活跃态棒旋星系的恒星形成活动依旧相对剧烈,尤其体现在长棒星系中。这说明棒结构对旋涡星系中央的恒星形成起到促进作用,且作用效果与棒的长短相关。  相似文献   

4.
王放  郑宪忠 《天文学报》2011,52(2):105-114
从观测上测定早型星系中恒星形成活动随红移的演化有助于理解这类星系的形成演化.结合GEMS(Galaxy Evolution from Morphology and SEDs)巡天的HST/ACS(Hubble Space Telescope/Advanced Camera for Surveys)高分辨图像和CDFS(ChandraDeep Field South)天区Spitzer、GALEX(Galaxy Evolution Explorer)等多波段数据,基于形态、颜色和恒星质量选出一个0.2≤z≤1.0红移范围的包含456个早型星系的完备样本.利用stacking技术测量了样本星系紫外与红外平均光度,估计早型星系的恒星形成率.结果显示,早型星系中的恒星形成率较低(<3 M·yr-1),随红移递减而降低.在红移z=1以来的恒星形成贡献的质量小于15%.星族分析亦肯定大质量早型星系的主体星族形成于宇宙早期(z>2).  相似文献   

5.
通过对近邻星系团Abell 2199中290颗成员星系进行形态分类,研究这些星系的恒星形成率及其与形态和相关物理特性之间的关系.该星系团中星系的特征恒星形成率与Ha等值宽度、星系光谱在4000A处的跃变程度以及星系所包含的恒星质量之间有较强的相关性.这些星系的恒星形成活动没有表现出明显的环境效应,表明该星系团仍处在剧烈的动力学演化阶段,远没有达到动力学平衡.  相似文献   

6.
利用赫歇尔空间望远镜的H-ATLAS(Herschel Astrophysical Terahertz Large Area Survey)SDP(Science Demonstration Phase)天区从紫外到亚毫米波段数据,结合星族合成方法和尘埃模型,计算了星系的红外总光度.在此基础上,分别针对强恒星形成星系和弱恒星形成星系,研究了利用紫外光度、红外光度和Hα谱线计算得到的恒星形成率(Star Formation Rate,SFR)的差异以及导致差异的内在物理起因.发现对于恒星形成活动强的星系,这3种恒星形成率指针给出的结果基本一致,弥散较小、只是在高恒星形成率端,利用紫外光度算得的恒星形成率比利用Hα谱线流量算得的恒星形成率略微偏小;而在低恒星形成率端,紫外光度指针偏大于Hα谱线指针;红外光度指针与Hα谱线指针在两端无明显偏差.对弱恒星形成星系,紫外光度、Hα谱线和红外光度3种恒星形成率指针存在明显的差异,且弥散较大.利用紫外光度和Hα谱线计算得到的恒星形成率的弥散和系统偏差随着星系年龄、质量的增加而增大.系统偏差增大的主要原因是利用紫外连续谱斜率β定标恒星形成活动较弱星系的消光时,高估了这些星系的紫外消光,使得消光改正后的紫外光度偏大.另外,MPA/JHU(Max Planck Institute for Astrophysics/Johns Hopkins University)数据库中弱恒星形成星系的恒星形成率SFR(Hα)比真实值偏低.  相似文献   

7.
观测发现,恒星形成星系(star-forming galaxies, SFGs)的恒星形成率(ψSFR)与恒星质量(M*)之间存在紧密的相关关系(即lgψSFR-lg M*,称为“主序关系”),弥散约为0.2~0.4 dex。主序关系对限制星系演化的理论模型具有重要的意义,是描述星系演化的基本关系之一。近年来,随着大型观测设备和数据处理技术飞速发展,星系形成和演化的理论模型也越来越完善,在此基础上,天文学家对于主序关系的研究取得了许多重要进展。首先介绍测量星系ψSFR的技术和挑选SFGs的方法,方便后续分析主序关系存在系统性偏差的原因。然后介绍主序关系最新的观测进展:主序关系在大质量端会“变平”,可能是由于星系/暗晕冷热吸积模式发生转换导致冷吸积减少;主序关系的弥散对恒星质量的依赖呈现U型,可能是由于小质量端的恒星反馈和大质量端的活动星系核反馈导致恒星质量相近的星系在恒星形成历史上具有多样性;理论与观测得到的主序关系零点在中高红移存在差异的问题依然存在较大争议。最后对主序关系的研究进行了总结和展望。  相似文献   

8.
挑选Sloan数字巡天第7次释放数据(SDSS DR7)的主星系样本中近邻的、面向的盘状星系作为星系样本,统计研究了在恒星总质量相等的情况下盘状星系的颜色和尺度之间的相关性,并对相关性的真实性进行了检验.发现对于同等质量的盘状星系,u-r颜色与尺度相关性很弱,而g-r、r-i、r-z颜色与尺度负相关,即星系的尺度越大,颜色越蓝.该结果意味着盘状星系的质量分布对其恒星形成历史影响很大,物质分布越延展的星系,其演化越慢.  相似文献   

9.
卫星星系是研究星系形成的有力探针.近期的研究指出,中央星系是椭圆星系时,其卫星星系数目比旋涡星系多.为了探究这种差异,采用了新一代流体动力学模型(The Next Generation Illustris Simulations,简称TNG模拟)中TNG300-1的数据,选择了恒星质量范围为1010M⊙·h-1Mc1012M⊙·h-1的中央星系,同时根据星系的核球质量与星系的恒星质量的比值(B/T)将这个范围的中央星系划分为旋涡星系和椭圆星系.使用统计学的方法进行分析后发现:当控制暗晕质量分布,使得不同形态的中央星系所处的暗晕的质量分布完全相同时,卫星星系分布存在新的差异,即旋涡星系的卫星星系数目更多.这一结论和观测结果相反,产生这一差异的主要原因是:旋涡星系的卫星星系包含更多的冷气体,使得旋涡星系的卫星星系恒星形成效率更高.  相似文献   

10.
白东方 《天文学报》2022,63(1):10-105
定位快速射电暴(Fast Radio Burst, FRB)以及确认其寄主星系至今仍是一个具有挑战性的难题,截至2021年4月已确认13个快速射电暴的寄主星系,其中只有3个重复暴,其余都是非重复暴.快速射电暴的寄主星系对快速射电暴起源的探索起着非常重要的作用,约束着快速射电暴前身星模型.对这些已确认寄主星系的FRB进行研究,发现FRB寄主星系对色散量(Dispersion Measure, DM)的贡献在一定范围内波动(0–240 pc·cm-3),并且寄主星系对DM的贡献与寄主星系的性质(恒星形成率、金属丰度)也可能具有关联性.寄主星系恒星形成率、金属丰度与色散量的统计关系对FRB邻近环境的研究有着重要意义.  相似文献   

11.
Major-mergeing pairs of galaxies are excellent experimental objects to study the simultaneous influences of galaxy itself and the external environment, which can be traced by the changes of star formation rates. These effects, including the stellar mass of galaxies, the projected distance, and the relative inclination of pairs of galaxies, are all important factors related to star formation rates. The results imply that the galaxies with the greater star formation rates tend to be caused by the greater stellar masses, and the galaxies with relative inclinations close to parallel also have greater increases about star formation. However, the projected distances have no correlation with the star formation rates in the scope of this study.  相似文献   

12.
We analyse star formation rates (SFRs) derived from photometric and spectroscopic data of galaxies in pairs in different environments using the 2-degree field galaxy redshift survey (2dFGRS) and the Sloan digital sky survey (SDSS). The two samples comprise several thousand pairs, suitable to explore into detail the dependence of star formation activity in pairs on orbital parameters and global environment. We use the projected galaxy density derived from the fifth brightest neighbour of each galaxy, with a convenient luminosity threshold to characterize environment in both surveys in a consistent way. Star formation activity is derived through the η parameter in 2dFGRS and through the SFR normalized to the total mass in stars,  SFR/ M *  , given by Brinchmann et al. in the SDSS-second data release (SDSS-DR2). For both galaxy pair catalogs, the star formation birth rate parameter is a strong function of the global environment and orbital parameters. Our analysis on SDSS pairs confirms previous results found with the 2dFGRS where suitable thresholds for the star formation activity induced by interactions are estimated at a projected distance   r p= 100  h −1 kpc  and a relative velocity  Δ V = 350 km s−1  . We observe that galaxy interactions are more effective at triggering important star formation activity in low- and moderate-density environments with respect to the control sample of galaxies without a close companion. Although close pairs have a larger fraction of actively star-forming galaxies, they also exhibit a greater fraction of red galaxies with respect to those systems without a close companion, an effect that may indicate that dust stirred up during encounters could affect colours and, partially, obscure tidally induced star formation.  相似文献   

13.
We extract from the Sloan Digital Sky Survey a sample of 347 systems involving early-type galaxies separated by less than 30 kpc, in projection, and 500 km s−1 in radial velocity. These close pairs are likely progenitors of dry mergers. The (optical) spectra are used to determine how the interaction affects the star formation history and nuclear activity of the galaxies. The emission lines (or lack thereof) are used to classify the sample into AGN, star forming or quiescent. Increased AGN activity and reduced star formation in early-type pairs that already appear to be interacting indicate that the merging process changes the nature of nebular activity, a finding that is also supported by an increase in AGN luminosity with decreasing pair separation. Recent star formation is studied on the absorption-line spectra, both through the principal component analysis and via a comparison of the spectra with composite stellar population models. We find that the level of recent star formation in close pairs is raised relative to a control sample of early-type galaxies. This excess of residual star formation is found throughout the sample of close pairs and does not correlate with pair separation or with visual signs of interaction. Our findings are consistent with a scenario whereby the first stage of the encounter (involving the outer parts of the haloes) triggers residual star formation, followed by a more efficient inflow towards the centre – switching to an AGN phase – after which the systems are quiescent.  相似文献   

14.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

15.
We investigate the clustering properties of a complete sample of 105 star-forming galaxies drawn from the data release 4 (DR4) of the Sloan Digital Sky Survey. On scales less than 100 kpc, the amplitude of the correlation function exhibits a strong dependence on the specific star formation rate (SSFR) of the galaxy. We interpret this as the signature of enhanced star formation induced by tidal interactions. We then explore how the average star formation rate (SFR) in a galaxy is enhanced as the projected separation r p between the galaxy and its companions decreases. We find that the enhancement strongly depends on r p, but very weakly on the relative luminosity of the companions. The enhancement is also stronger in low-mass galaxies than in high-mass galaxies. In order to explore whether a tidal interaction is not only sufficient, but also necessary to trigger enhanced star formation in a galaxy, we compute background subtracted neighbour counts for the galaxies in our sample. The average number of close neighbours around galaxies with low to average values of SFR/ M * is close to zero. At the highest SSFRs, however, more than 40 per cent of the galaxies in our sample have a companion within a projected radius of 100 kpc. Visual inspection of the highest SFR/ M * galaxies without companions reveals that more than 50 per cent of these are clear interacting or merging systems. We conclude that tidal interactions are the dominant trigger of enhanced star formation in the most strongly star-forming systems. Finally, we find clear evidence that tidal interactions not only lead to enhanced star formation in galaxies, but also cause structural changes such as an increase in concentration.  相似文献   

16.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

17.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

18.
We have produced radio maps, using the Australia Telescope Compact Array, of the central regions of six southern type 2 Seyfert galaxies (NGC 1365, 4945, 6221, 6810, 7582 and Circinus) with circumnuclear star formation, to estimate the relative contribution of star formation activity compared to activity from the active galactic nucleus (AGN). The radio morphologies range from extended diffuse structures to compact nuclear emission, with no evidence, even in the relatively compact sources, for synchrotron self-absorption. In each case the radio to far-infrared (FIR) ratio has a value consistent with star formation, and in all but one case the radio to [Fe  II ] ratio is also consistent with star formation. We derive supernova rates and conclude that, despite the presence of a Seyfert nucleus in these galaxies, the radio, FIR and [Fe  II ] line emissions are dominated by processes associated with the circumnuclear star formation (i.e. supernova remnants and H  II regions) rather than with the AGN.  相似文献   

19.
We estimate the fraction of star-forming galaxies in a catalogue of groups, constructed from the 2dF Galaxy Redshift Survey by Merchán & Zandivarez. We use the η spectral type parameter of galaxies and subdivide the sample of galaxies in groups into four types depending on the values of the η parameter following Madgwick et al. We obtain a strong correlation between the relative fraction of galaxies with high star formation and the parent group virial mass. We find that even in the environment of groups with low virial mass   M ∼1013 M  the star formation of their member galaxies is significantly suppressed. The relation between the fraction of early-type galaxies and the group virial mass obeys a simple power law spanning over three orders of magnitude in virial mass. Our results show quantitatively the way that the presence of galaxies with high star formation rates is inhibited in massive galaxy systems.  相似文献   

20.
Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its starforming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号