首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work deals with the possible solution of the solar neutrino problem in the framework of the resonant neutrino spin-flavor precession scenario. The event rate results from the solar neutrino experiments as well as the recoil electron energy spectrum from SuperKamiokande are used to constrain the free parameters of the neutrino in this model (Δm2 and μν). We consider two kinds of magnetic profiles inside the sun. For both cases, a static and a twisting field are discussed.  相似文献   

2.
A nonlinear dynamo model that allows for the dependence of the turbulent diffusivity on the magnetic field shows the phenomenon of a hysteresis. In a certain range of dynamo numbers, two types of solutions are possible: decaying oscillations of weak fields and magnetic cycles with a constant and large amplitude, which are settled depending on the initial conditions. Fluctuations in α-parameter cause transitions between these two regimes and calculations show the intermittency of magnetic cycles with a relatively large amplitude and epochs of weak magnetic fields. This behavior can serve as a model of grand minima of solar activity like the well-known Maunder minimum.  相似文献   

3.
This article presents a comparative analysis of solar activity data, Mt Wilson diameter data, Super-Kamiokande solar neutrino data, and nuclear decay data acquired at the Lomonosov Moscow State University (LMSU). We propose that salient periodicities in all of these datasets may be attributed to r-mode oscillations. Periodicities in the solar activity data and in Super-Kamiokande solar neutrino data may be attributed to r-mode oscillations in the known tachocline, with normalized radius in the range 0.66–0.74, where the sidereal rotation rate is in the range 13.7–14.6 year−1. We propose that periodicities in the Mt Wilson and LMSU data may be attributed to similar r-mode oscillations where the sidereal rotation rate is approximately 12.0 year−1, which we attribute to a hypothetical “inner” tachocline separating a slowly rotating core from the radiative zone. We also discuss the possible role of the Resonant Spin Flavor Precession (RSFP) process, which leads to estimates of the neutrino magnetic moment and of the magnetic field strength in or near the solar core.  相似文献   

4.
We discuss here what model independent information about properties of neutrinos and of the sun can be obtained from future solar neutrino experiments (SNO, Super-Kamiokande). It is shown that in the general case of transitions of solar νe's into νμ and/or ντ the initial 8B neutrino flux can be measured by the observation of NC events. From the CC measurements the νe survival probability can be determined as a function of neutrino energy. The general case of transitions of solar νe's into active as well as sterile neutrinos is considered. A number of relations between measurable quantities the test of which will allow to answer the question whether there are sterile neutrinos in the solar neutrino flux on the earth are derived. Transitions of solar νe's into active and sterile states due to neutrino mixing and Dirac magnetic moments or into active left-handed neutrinos and active right-handed antineutrinos due to neutrino mixing and Majorana transition magnetic moments are also considered. It is shown that future solar neutrino experiments will allow to distinguish between the cases of Dirac and Majorana magnetic moments.  相似文献   

5.
Using microwave observations made with the Nobeyama radioheliograph (=1.76 cm), we have studied temporal variations of sunspot-associated sources in the circularly polarized component. For all three cases of well-developed and rather stable sunspots we found nearly harmonic oscillations with periods in a range of 120–220 s. In one case of an unstable and quickly devolving active region, the fluctuations appear to be irregular with no dominant period. Sunspot-associated solar radio sources are known to be generated by cyclotron radiation of thermal electrons in magnetic tubes of sunspots at the level of the lower solar corona or chromosphere–corona transition region (CCTR). At the wavelength of 1.76 cm, the polarized emission arises in a layer where the magnetic field is B=2000 G (assuming the emission generated at the third harmonic of electron gyrofrequency). We suggest that the observed effect is a manifestation of the well-known 3-min oscillations observed in the chromosphere and photosphere above sunspots. The observed effects are believed to be a result of resonance oscillation of MHD waves inside a magnetic tube. Radio observations of this phenomenon open a new tool for studying regions of reflection of MHD waves near CCTR level. The method is very sensitive both to the height of the CCTR and magnetic fields above sunspots. Thus, detection of oscillations of the height of the transition region even with an amplitude of a few km are possible. The use of a spectrum of one of the observed sources obtained with the radio telescope RATAN-600 allows us to conclude that oscillations in magnetic field strength of about 4 G could be responsible for the effect and are reliably registered. The appearance of the famous 5-min oscillations in the solar atmosphere was also registered in some spectra of radio oscillations.  相似文献   

6.
The solar dynamo     
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.  相似文献   

7.
I assume that at the solar core finite amplitude flows are generated by some process for which a candidate can be the planetary tides. I assume also that there are some local magnetic flux bundles at the solar core with a strength larger than 103 G. The aim of this paper is to show that these assumptions involve an electric field generation which then produces local thermonuclear runaways which shoot up convective cells to the outer layers. Within certain conditions these primal convective cells erupt in the subphotospheric layers which phenomenon can produce high-energy particle beams which when injected into magnetic flux tubes appear as flares. I suggest these processes for solving the neutrino problem, and also to interpret the spiky character of the solar neutrino flux and the correlation of the energy production of the Sun with its atmospheric activity.  相似文献   

8.
There has been discussion of the possibility of resolving the solar neutrino dilemma with a sufficiently strong magnetic field (5×108 G) in the solar interior to relieve the gas pressure by some ten percent or more. We examine the time in which magnetic buoyancy will bring a strong field to the surface and find it to be less than 108 yr. We see no possibility for retaining a suitably strong magnetic field in the solar interior.  相似文献   

9.
Cyclic variations of the solar neutrino flux (Homestake detector data) have been analyzed both from season to season and within different seasons and were compared with the corresponding variations of the large-scale deep-layer solar magnetic field. The analysis revealed a seasonal variation of the flux in the last twenty years with extremes at equinox epochs. The mechanism of this variation can be due to the asymmetry in magnitudes or to the twisting of the large-scale magnetic fields in the southern and northern hemispheres of the Sun in the flux modulation region.  相似文献   

10.
Observations of velocity fields in the solar atmosphere made with the Mount Wilson solar magnetograph are analyzed. These observations, which were made with very high velocity sensitivity, cover nearly 250 hours and were made with apertures of several sizes and at various parts of the solar disk, and in strong and weak magnetic fields. The amplitudes of the 300-sec oscillations are about 25% weaker in regions where the magnetic field is greater than 80 gauss than where the field is less than 10 gauss. No difference in the frequencies of the oscillations could be found between strong-field and field-free regions. It is suggested that the oscillations occur only where the field is absent and the lower amplitude in a strong field represents the fraction of the magnetograph aperture occupied by a magnetic field. The element sizes for the 300-sec oscillations are probably at least 5–10 arc seconds.Observations made simultaneously with two lines formed at different depths in the solar atmosphere showed small phase differences in the 5-min oscillations. The upper level showed shorter period oscillations when the lower level oscillations underwent phase changes.A short period oscillation is found superposed on the 300-sec oscillation. These SPOs come in bursts that last for a minute or two and have average amplitudes that fall in the range 0.05–0.10 km/sec peak to peak. All attempts to explain them as instrumental or seeing effects have failed. Their periods fall in the range 1–5 seconds. The horizontal scale of these oscillations is smaller than that of the 300-sec oscillations, and the SPOs are more nearly isotropic oscillations than are these around 300 seconds. They do not represent a high-frequency tail of the latter. These observations did not have a digitizing interval short enough to analyze the SPOs for power spectra, but it is clear from the tracings that they are not a nearly monochromatic oscillation as are the longer waves. The amplitudes of the SPOs in the solar atmosphere must be very large and they contribute greatly to the non-radiative energy flux. It is suggested that they represent a large microturbulence line-broadening effect.  相似文献   

11.
Although KamLAND apparently rules out resonant-spin-flavor-precession (RSFP) as an explanation of the solar neutrino deficit, the solar neutrino fluxes in the Cl and Ga experiments appear to vary with solar rotation. Added to this evidence, summarized here, a power spectrum analysis of the Super-Kamiokande data reveals significant variation in the flux matching a dominant rotation rate observed in the solar magnetic field in the same time period. Three frequency peaks, all related to this rotation rate, can be explained quantitatively. A Super-Kamiokande paper reported no time variation of the flux, but showed the same peaks, there interpreted as statistically insignificant, due to an inappropriate analysis. This modulation is small (7%) in the Super-Kamiokande energy region (and below the sensitivity of the Super-Kamiokande analysis) and is consistent with RSFP as a subdominant neutrino process in the convection zone. The data display effects that correspond to solar-cycle changes in the magnetic field, typical of the convection zone. This subdominant process requires new physics: a large neutrino transition magnetic moment and a light sterile neutrino, since an effect of this amplitude occurring in the convection zone cannot be achieved with the three known neutrinos. It does, however, resolve current problems in providing fits to all experimental estimates of the mean neutrino flux, and is compatible with the extensive evidence for solar neutrino flux variability.  相似文献   

12.
We have performed a comparative analysis of the results of our study of the 22-year rotation variations obtained from data on large-scale magnetic fields in the Hα line, magnetographic observations, and spectral-corona observations. All these types of data suggest that the rotation rate at low latitudes slows down at an epoch close to the maximum of odd activity cycles. The 22-year waves of rotation-rate deviation from the mean values drift from high latitudes toward the equator in a time comparable to the magnetic-cycle duration. We discuss the possibility of the generation of a solar magnetic cycle by the interaction of 22-year torsional oscillations with the slowly changing or relic magnetic field. We consider the generation mechanisms of the high-latitude magnetic field through a superposition of the magnetic fields produced by the decay and dissipation of bipolar groups and the relic or slowly changing magnetic field and a superposition of the activity wave from the next activity cycle at high latitudes.  相似文献   

13.
《Astroparticle Physics》2006,24(6):543-556
Although KamLAND apparently rules out resonant-spin-flavor-precession (RSFP) as an explanation of the solar neutrino deficit, the solar neutrino fluxes in the Cl and Ga experiments appear to vary with solar rotation. Added to this evidence, summarized here, a power spectrum analysis of the Super-Kamiokande data reveals significant variation in the flux matching a dominant rotation rate observed in the solar magnetic field in the same time period. Three frequency peaks, all related to this rotation rate, can be explained quantitatively. A Super-Kamiokande paper reported no time variation of the flux, but showed the same peaks, there interpreted as statistically insignificant, due to an inappropriate analysis. This modulation is small (7%) in the Super-Kamiokande energy region (and below the sensitivity of the Super-Kamiokande analysis) and is consistent with RSFP as a subdominant neutrino process in the convection zone. The data display effects that correspond to solar-cycle changes in the magnetic field, typical of the convection zone. This subdominant process requires new physics: a large neutrino transition magnetic moment and a light sterile neutrino, since an effect of this amplitude occurring in the convection zone cannot be achieved with the three known neutrinos. It does, however, resolve current problems in providing fits to all experimental estimates of the mean neutrino flux, and is compatible with the extensive evidence for solar neutrino flux variability.  相似文献   

14.
The increasing power of computers makes it possible to model the non-linear interaction between magnetic fields and convection at the surfaces of solar-type stars in ever greater detail. We present the results of idealized numerical experiments on two-dimensional magnetoconvection in a fully compressible perfect gas. We first vary the aspect ratio λ of the computational box and show that the system runs through a sequence of convective patterns, and that it is only for a sufficiently wide box (λ ≥ 6) that the flow becomes insensitive to further increases in λ. Next, setting λ = 6, we decrease the field strength from a value strong enough to halt convection and find transitions to small-scale steady convection, next to spatially modulated oscillations (first periodic, then chaotic) and then to a new regime of flux separation, with regions of strong field (where convection is almost completely suppressed) separated by broad convective plumes. We also explore the effects of altering the boundary conditions and show that this sequence of transitions is robust. Finally, we relate these model calculations to recent high-resolution observations of solar magnetoconvection, in plage regions as well as in light bridges and the umbrae of sunspots.  相似文献   

15.
E. Papini  L. Gizon  A. C. Birch 《Solar physics》2014,289(6):1919-1929
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization affects the result, however. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within 1 μHz for low-degree modes with frequencies near 3 mHz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.  相似文献   

16.
The problem of the interaction between magnetic fields and differential rotation in the radiative zone of the Sun is investigated. It is demonstrated that effects of magnetic buoyancy can be neglected in the analysis of this interaction. It is shown that hydromagnetic torsional waves propagating from the solar core cannot be responsible for the 22-year solar cycle. A possible geometry of the magnetic field that conforms with stationary differential rotation is considered. A verifying method for hypotheses on the structure of the magnetic field and torsional oscillations in the radiative zone of the Sun is proposed based on helioseismic data.  相似文献   

17.
Neutrino spin precession effects in the magnetic field of the Sun are considered as an explanation of the outcome of Davis' solar neutrino experiments. Theoretically, it is possible to account for a neutrino magnetic moment only as the result of the interaction of the electromagnetic field with charged particles into which the neutrino can transform virtually. The currently accepted theory of weak interactions (the two component neutrino andV-A interactions) forbids a resulting magnetic moment interaction with the electromagnetic field for all such virtual processes. Modifications of this theory are considered to find out whether an appreciable precession effect is permitted within the experimentally established limits. It is found that the value for the neutrino magnetic moment evaluated under these theoretically anomalous circumstances is still so small that only the largest possible estimate for the magnetic field strength in the Sun's interior would cause the required effect.The author has received scholarship support from the Latin American Scholarship Program of American Universities during the preparation of this work.  相似文献   

18.
An experiment carried out at the Brookhaven National Laboratory over a period of almost 8 years acquired 364 measurements of the beta-decay rates of a sample of \({}^{32}\mbox{Si}\) and, for comparison, of a sample of \({}^{36}\mbox{Cl}\). The experimenters reported finding “small periodic annual deviations of the data points from an exponential decay?…?of uncertain origin”. We find that power-spectrum and spectrogram analyses of these datasets show evidence not only of the annual oscillations, but also of transient oscillations with frequencies near 11 year?1 and 12.5 year?1. Similar analyses of 358 measurements of the solar neutrino flux acquired by the Super-Kamiokande neutrino observatory over a period of about 5 years yield evidence of an oscillation near 12.5 year?1 and another near 9.5 year?1. An oscillation near 12.5 year?1 is compatible with the influence of rotation of the radiative zone. We suggest that an oscillation near 9.5 year?1 may be indicative of rotation of the solar core, and that an oscillation near 11 year?1 may have its origin in a tachocline between the core and the radiative zone. Modulation of the solar neutrino flux may be attributed to an influence of the Sun’s internal magnetic field by the Resonant Spin Flavor Precession (RSFP) mechanism, suggesting that neutrinos and neutrino-induced beta decays can provide information about the deep solar interior.  相似文献   

19.
The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neutrino oscillations through the observation of neutrinos from the solar core. In this paper we present a search for neutrinos associated with sources other than the solar core, such as gamma-ray bursts and solar flares. We present a new method for looking for temporal coincidences between neutrino events and astrophysical bursts of widely varying intensity. No correlations were found between neutrinos detected in SNO and such astrophysical sources.  相似文献   

20.
We study the effects of two-dimensional turbulence generated in sunspot umbra due to strong magnetic fields and Alfven oscillations excited in sunspots due to relatively weak magnetic fields on the evolution of sunspots. Two phases of sunspot magnetic field decaying are shown to exist. The initial rapid phase of magnetic field dissipation is due to two-dimensional turbulence. The subsequent slow phase of magnetic field decaying is associated with Alfven oscillations. Our results correspond to observed data that provide evidence for two types of sunspot evolution. The effect of macroscopic diamagnetic expulsion of magnetic field from the convective zone or photosphere toward sunspots is essential in supporting the long-term stability and equilibrium of vertical magnetic flux tubes in sunspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号