首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Increased water yield and baseflow and decreased peak flow are common goals of watershed service programs. However, is the forest management often used in such programs likely to provide these beneficial watershed services? Many watershed service investments such as water funds typically change less than 10% of watershed land cover. We simulate the effects of 10% forest-cover change on water yield, low flow, and high flow in hydrologic models of 29 watersheds around the world. The forest-cover changes considered are: forest restoration from degraded natural lands or agriculture, forest conversion to agriculture, and forest conversion to urban cover. We do not consider grassland restoration by removal of alien tree species from riparian zones, which does increase water yield and low flow. Forest restoration from locally-predominant agricultural land resulted in median loss in annual water yield of 1.4%. Forest restoration reduced low flow and high flow by ∼3%. After forest restoration, low flow increased in ∼25% of cases while high flow and water yield declined in nearly all cases. Development of forest to agriculture or urban cover resulted in a 1–2% median increase in water yield, a 0.25–1% increase in low flow, and a 5–7% increase in high flow. We show that hydrologic responses to forest cover changes are not linearly related to climate, physiography, initial land cover, nor a multitude of watershed characteristics in most cases. These results suggest that enhanced streamflow watershed services anticipated from forest restoration or conservation of 10% or less of a watershed are generally modest.  相似文献   

2.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

3.
The structure of turbulent flows along a transition between tall-forested canopies and forest clearings continues to be an active research topic in canopy turbulence. The difficulties in describing the turbulent flow along these transitions stem from the fact that the vertical structure of the canopy and its leaf area distribution cannot be ignored or represented by an effective roughness length. Large-eddy simulation (LES) runs were performed to explore the effect of a homogeneous variation in the forest leaf area index (LAI) on the turbulent flow across forest edges. A nested grid numerical method was used to ensure the development of a deep boundary layer above the forest while maintaining a sufficiently high resolution in the region close to the ground. It was demonstrated that the LES here predicted first-order and second-order mean velocity statistics within the canopy that agree with reported Reynolds-Averaged Navier–Stokes (RANS) model results, field and laboratory experiments. In the simulations reported here, the LAI was varied between 2 and 8 spanning a broad range of observed LAI in terrestrial ecosystems. By increasing the forest LAI, the mean flow properties both within the forest and in the clearing near the forest edge were altered in two fundamental ways: near the forest edge and into the clearing, the flow statistical properties resembled the so-called back-facing step (BFS) flow with a mean recirculation zone near the edge. Another recirculation zone sets up downstream of the clearing as the flow enters the tall forest canopy. The genesis of this within-forest recirculation zone can be primarily described using the interplay between the mean pressure gradients (forcing the flow) and the drag force (opposing the flow). Using the LES results, a simplified analytical model was also proposed to explain the location of the recirculation zone inside the canopy and its dependence on the forest LAI. Furthermore, a simplified scaling argument that decomposes the mean velocity at the outflow edge into a superposition of ‘exit flow’ and BFS-like flow with their relative importance determined by LAI was explored.  相似文献   

4.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

5.
Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5h, 10h, 15h, 20h, 30h, where h is the canopy height) between forest blocks of length 8.7h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.  相似文献   

6.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   

7.
Mechanisms Controlling Turbulence Development Across A Forest Edge   总被引:2,自引:9,他引:2  
In this paper we discuss the development of turbulence back from the transition fromopen moorland to a forest. Data from a field study and a wind-tunnel experiment arepresented. These show that the variance in the streamwise velocity begins to adjust tothe new surface between 2 to 4 tree heights downwind of the transition. This is soonerthan either the vertical velocity variance or the shear stress, both of which begin to adjust in a zone 3 to 5 tree heights downwind of the edge. Key terms in the prognostic equations for streamwise and vertical velocity variance are evaluated in order to explain these differences. The flow distortion caused by the forest edge, which extends to 4 tree heights downwind of the forest edge, is shown to be crucial in the delayed turbulence development. Initially the shear production term, which is the dominant source for the streamwise velocity variance, is counteracted by a sink in the vertical advection term. After the flow levels out the pressure redistribution (return-to-isotropy) term becomes the main sink of streamwisevelocity variance and feeds energy into the vertical velocity component. Therefore, thedevelopment of the vertical velocity variance and shear stress cannot begin until afterdevelopment of an increase in the streamwise velocity variance. Results are comparedwith other experiments, including the flow across shelterbelts, and large-eddy simulations of forest flow.  相似文献   

8.
Footprint Analysis For Measurements Over A Heterogeneous Forest   总被引:8,自引:2,他引:6  
The air flow and vertical distribution of sources/sinks inside aforest canopy have been taken into accountin the analysis of the contribution of sources/sinks to measured fluxes and concentrations above a forest. Thestochastic estimators for concentrations and fluxes are described and their evaluation is performed by simulationof an ensemble of fluid parcel trajectories. The influence of the forest canopy on the footprint is important forobservation levels up to a few times the forest height. The influence of along-wind turbulent diffusion, whichanalytical atmospheric surface layer (ASL) footprint models do not account for, is significant even at higherlevels. The footprint analysis has been performed to deduce the Douglas fir canopy carbon dioxide uptake from eddycovariance flux measurements above a mixed Douglas fir–beech forest during the pre-leaf periods of the beech.The scatter in the results indicates that such an analysis is limited, presumably due to horizontal inhomogenetiesin flow statistics, which were not included in trajectory simulation. The analysis, however, is useful for theestimation of the qualitative effect of the forest canopy on the footprint function.  相似文献   

9.
Coherent Turbulent Structures Across a Vegetation Discontinuity   总被引:3,自引:2,他引:1  
The study of turbulent flow across a vegetation discontinuity is of significant interest as such landscape features are common, and as there is no available theory to describe this regime adequately. We have simulated the three-dimensional dynamics of the airflow across a discontinuity between a forest (with a leaf area index of 4) and a clearing surface using large-eddy simulation. The properties of the bulk flow, as well as the large-scale coherent turbulent structures across the forest-to-clearing transition and the clearing-to-forest transition, are systematically explored. The vertical transport of the bulk flow upstream of the leading edge gives rise to the enhanced gust zone around the canopy top, while the transport downstream of the trailing edge leads to the formation of a recirculation zone above the clearing surface. The large-scale coherent structures across the two transitions exhibit both similarities with and differences from those upstream of the corresponding transition. For example, the ejection motion is dominant over the sweep motion in most of the region 1?<?z/h < 2 (h is the canopy height) immediately downstream of the trailing edge, much as in the forested area upstream. Also, the streamwise vortex pair, which has previously been observed within the canopy sublayer and the atmospheric boundary layer, is consistently found across both transitions. However, the inflection observed both in the mean streamwise velocity, as well as in the vertical profiles of the coherent structures in the forested area, disappears gradually across the forest-to-clearing transition. The coherence of the turbulence, quantified by the percentage of the total turbulence kinetic energy that the coherent structures capture from the flow, decreases sharply immediately downstream of the trailing edge of the forest and increases downstream of the leading edge of the forest. The effects of the ratio of the forest/clearing lengths under a given streamwise periodicity on flow statistics and coherent turbulent structures are presented as well.  相似文献   

10.
Numerical simulations of flow over hills that are partially covered with a forest canopy are performed. This represents a much more realistic situation than previous studies that have generally concentrated on hills that are fully-forested. The results show that the flow over the hill is sensitive to where on the hill the forest is positioned. In particular, for low slopes flow separation is predominantly located within the forest on the lee slope. This has implications for the transport of scalars in the forest canopy. For large hills the results show more variability in scalar concentrations within the canopy compared to either a fully-forested hill or a patch of forest over flat terrain. These results are likely to have implications for a range of applications including the siting and interpretation of flux measurements over forests in complex terrain, predicting wind damage to trees and wind-farm developments. Calculation of the hill-induced pressure drag and canopy-plus-surface stress shows a strong sensitivity to the position of the forest relative to the hill. Depending on the position of the forest the individual drag terms may be strongly enhanced or reduced and may even change sign. The net impact is generally to reduce the total drag compared to an equivalent fully-forested hill, but the amount of the reduction depends strongly on the position of the forest canopy on the hill. In many cases with large, wide hills there is a clear separation of scales between the adjustment of the canopy to a forest edge (of order 6 ? 8L c, where L c is the canopy adjustment length scale) and the width of the hill. This separation means that the hill-induced pressure and flow fields and the forest-edge induced pressure and flow fields can in some sense be considered as acting separately. This provides a means of explaining the combined effects of partial forestation and terrain. It also offers a simple method for modelling the changes in drag over a hill due to partial forest cover by considering the impact of the hill and the partial canopy separately. Scaling arguments based on this idea successfully collapse the modelled drag over a range of different hill widths and heights and for different canopy parameters. This offers scope for a relatively simple parametrization of the effects of partial forest cover on the drag over a hill.  相似文献   

11.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

12.
通过WRF V2.1.2模式数值模拟试验并结合长期观测数据,研究了中国西北半干旱区长期存在和维持的森林山区(兴隆山区,103.84°E、35.86°N)的降水特征及其与周边地区的降水差异,并探讨了造成这种差异的主要原因。结果表明,兴隆山区与周边地区的降水差异主要表现在夏、秋季。在夏、秋季兴隆山区受东南湿润气流的影响,获得较多的水汽输入和较稳定的水汽来源,而山地地形则有利于截留东南气流携带的水汽并形成降水;兴隆山区及其周边地区局地的蒸散差异对二者之间降水差异的贡献不大。另外,兴隆山区土壤堆积覆盖的石质山构造和森林下垫面也有利于降水的截留和贮存以及植被的生长。因此,有利于水汽输入的大尺度环流形势、地形对空中水汽的截留以及特殊的地质因素是兴隆山山区孤立森林岛在半干旱区长期存在和维持的原因。  相似文献   

13.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   

14.
利用湖南省2008-2017年10年森林火灾数据、卫星MODIS和VIIRS监测资料及常规气象资料,统计分析了湖南省森林火灾时空分布特征,分析结果表明:近10年湖南省森林火灾高发月份是2、3、4月, 3月最多,总次数为3800次,森林火灾在邵阳发生次数最多,郴州、长沙和永州次之。森林火灾受灾面积最大的是永州市、怀化市、邵阳市,达6800-7500公顷。重点分析了2018年2月14-19日湖南致灾严重的森林火灾过程与气象条件的关系,结果表明,森林火灾期间,气温偏高、相对湿度较小,降水量少,平均风速一般超过0.5m/s,火灾严重时段最大风速增大到6m/s左右,风向以偏东风和偏南风为主,湖南高低空受上下一致的西南风气流控制,天气形势较稳定。  相似文献   

15.
Abstract

A simple equation is developed for determining the ratio of wind speed above a rough vegetative canopy, such as a forest, to the wind speed over a relatively smooth surface, such as an airport, when both sites are subject to the same geostrophic wind. The usual assumptions for simplifying flow in the planetary boundary layer are followed and appropriate canopy parameters are introduced.

Values for the ratio of forest to airport wind speeds range from 0.4 to 0.7, with a typical value of 0.5.  相似文献   

16.
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.  相似文献   

17.
Although the creation of edges during forest fragmentation can have important abiotic and biotic impacts, especially under conditions of future climate change, mechanistic models of edge effects have not been forthcoming. A simple numerical model of two-dimensional heat flow is developed and applied to a vertical forest/clearcut edge profile and to simulated fragmented landscapes. Height-specific thermal diffusivity and conductivity in the forest were assumed to vary in proportion to foliage densities measured in the central Amazon. In the edge profile, the clearcut that abutted the edge served as a heat source and its temperature was maintained at a constant value higher than in the initially cooler forest. In the fragmented landscapes, simulated treefall gaps were heat sources whose temperature varied with sun movements during the day. Gap frequency was varied so as to approximate the gap coverage observed in selectively logged forests. In one set of simulations, temperature in the openings was systematically varied; in another, thermal diffusivity of the forest was varied. Along the edge profile, high temperatures in the clearcut were rapidly transmitted into the upper canopy due to additive edge effects. Temperatures in the forest understory were also very sensitive to clearcut temperatures due to relatively sparse understory foliage. An overall increase in forest diffusivity led to markedly higher temperatures close to the edge and a more even temperature distribution among height strata. In fragmented landscapes, total gap coverage and additivity from neighboring gaps strongly influenced forest temperatures. At low conductivities, heat flowed only into the forest close to the gaps and hence forest temperature increased almost linearly with gap area. However, at high conductivities, heat flowed far into the forest and forest temperature varied as a function of gap density in the surrounding neighborhood. Because of these additive effects, slight increases in total gap area led to disproportionate changes in the thermal profile of the landscape. These results have important implications for the conservation of forest ecosystems.  相似文献   

18.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

19.
A numerical model was developed to simulate neutrally stratified air flow over and through a forest edge. The spatially averaged equations for turbulent flow in vegetation canopies are derived as the governing equations. A first-order closure scheme with the capability of accounting for the bulk momentum transport process in vegetation canopies is employed. The averaged equations are solved numerically by a fractional time-step method and successive relaxation. The asymptotic solution in time is regarded as the steady-state solution. Comparisons of model output to the field measurements of Raynor (1971) indicate that the model provides a realistic mean flow.Momentum balance computations show that the pressure gradient induced by the wind blowing against the forest edge is significant and has the same order of magnitude as the drag force in the edge region. The edge effect involves the generation of drag forces, the appearance of a large pressure gradient, the upward deflection of mean flow and the transport of momentum into the edge of the canopy.  相似文献   

20.
Accounting harvested wood products and their trade as an integral part of thecarbon cycle of a managed forest is achallenging task. Nevertheless, an appropriate way is especially needed nowthat harvested wood products may be includedin Article 3.4 of the Kyoto Protocol. The adoption of a method for accountingfor these flows in the IPCC guidelines mayhave implications for the trade of wood products and thus on global forestmanagement.Four methods of accounting for wood products in an international perspective areanalyzed in the present study. The aimis to obtain insight in the technical and policy implications of the proposedmethods. These methods include the presentdefault IPCC method and three alternatives: flow consumption, flow production,and stock change. All fourmethodologies are applied to the 1990 data of Gabon, Sweden, and TheNetherlands.The impact of accounting for wood products using alternative methods has –in some cases – a large impact on the carbonbalance of the Land Use Change and Forestry (LUCF) sector. In the case of TheNetherlands, it was found that theLUCF carbon balance could be `converted' from a sink into a source dependingon the method chosen. However,the LUCF sector is very small compared to the total national carbon balancein The Netherlands. In Sweden, a countrywhere the forest sector plays an important role, the alternative wood productmethods influence the total nationalcarbon balance by 34%. In Gabon, a country with conversion forestry,the impact of alternative wood productmethods hardly influences the LUCF carbon balance because the emissions fromdeforestation are very large.The accounting method may have a large impact on the way countries regardtheir trade in wood products. It may bepossible for countries to buy a sink through the wood products trade, byimporting products faster than they decomposedomestically. In the case of Gabon with its conversion forestry (the changefrom forest into other types of land use, like agriculture,it was foundthat under the flow consumption method,this country can partly export the carbon sources resulting fromnonsustainable forest management. Nor is this lattermethod consistent with the energy chapter of the IPCC guidelines. The stockchange method seems to be a suitablemethod, combining precise accounting and simplicity. This method is also anincentive for the use of wood in long-lifeproducts and bioenergy, and for sustainable forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号