首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ratio salic rocks/basalts is higher in Tenerife than in other Atlantic islands. It is also surprising the number of intermediate types between phonolites and trachytes and the basalts. The salic rocks of Tenerife have been grouped in to two large units, one related to the edifice of « Las Cañadas » and the other to « Teide-Pico Viejo ». The top of the former collapsed and the latter was built in the Caldera thus formed. Both units belong to a middle atlantic series, but the atlantic character of « Teide-Pico Viejo » is stronger. A clear alkalinitization can be observed during the whole evolution. Most of the materials which are related to the Cañadas edifice are near the saturation line, and they must be classed as phonolites and Na-trachytes. In these rocks a variation trend related to that of the former alkaline basalts can be observed. In the latest episodes of their evolution cutaxite and pumice emissions appeared with great intensity. The « Teide-Pico Viejo » lava-flows are always of phonolite types with high amounts of normative nepheline. These materials also represented the end of the differentiation trend of an alkaline basaltic series, which started after the Cañadas edifice was built. This second trend ended in less silica-rich rocks than those of the Cañadas series.  相似文献   

2.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

3.
Since the onset of their eruptive activity within the Cañadas caldera, about 180 ka ago, Teide–Pico Viejo stratovolcanoes have mainly produced lava flow eruptions of basaltic to phonoltic magmas. The products from these eruptions partially fill the caldera, and the adjacent Icod and La Orotava valleys, to the north. Although less frequent, explosive eruptions have also occurred at these composite volcanoes. In order to assess the possible evolution Teide–Pico Viejo stratovolcanoes and their potential for future explosive activity, we have analysed their recent volcanic history, assuming that similar episodes have the highest probability of occurrence in the near future. Explosive activity during the last 35000 years has been associated with the eruption of both, mafic (basalts, tephro–phonolites) and felsic (phono–tephrites and phonolites) magmas and has included strombolian, violent strombolian and sub-plinian magmatic eruptions, as well as phreatomagmatic eruptions of mafic magmas. Explosive eruptions have occurred both from central and flank vents, ranging in size from 0.001 to 0.1 km3 for the mafic eruptions and from 0.01 to < 1 km3 for the phonolitic ones. Comparison of the Teide–Pico Viejo stratovolcanoes with the previous cycles of activity from the central complex reveals that all them follow a similar pattern in the petrological evolution but that there is a significant difference in the eruptive behaviour of these different periods of central volcanism on Tenerife. Pre-Teide central activity is mostly characterised by large-volume (1–> 20 km3, DRE) eruptions of phonolitic magmas while Teide–Pico Viejo is dominated by effusive eruptions. These differences can be explained in terms of the different degree of evolution of Teide–Pico Viejo compared to the preceding cycles and, consequently, in the different pre-eruptive conditions of the corresponding phonolitic magmas. A clear interaction between the basaltic and phonolitic systems is observed from the products of phonolitic eruptions, indicating that basaltic magmatism is the driving force of the phonolitic eruptive activity. The magmatic evolution of Teide–Pico Viejo stratovolcanoes will continue in the future with a probably tendency to produce a major volume of phonolitic magmas, with an increasing explosive potential. Therefore, the explosive potential of Teide–Pico Viejo cannot be neglected and should be considered in hazard assessment on Tenerife.  相似文献   

4.
Recent studies on Teide–Pico Viejo (TPV) complex have revealed that explosive activity of phonolitic and basaltic magmas, including plinian and subplinian eruptions, and the generation of a wide range of pyroclastic density currents (PDCs) have also been significant. We perform a statistical analysis of the time series of past eruptions and the spatial extent of their erupted products, including lava flows, fallout and PDCs. We use an extreme value theory statistical method to calculate eruption recurrence. The analysis of past activity and extent of some well-identified deposits is used to calculate the eruption recurrence probabilities of various sizes and for different time periods. With this information, we compute several significant scenarios using the GIS-based VORIS 2 software (Felpeto et al., J Volcanol Geotherm Res 166:106–116, 2007) in order to evaluate the potential extent of the main eruption hazards that could be expected from TPV. The simulated hazard scenarios show that the southern flank of Tenerife is protected by Las Cañadas caldera wall against lava flows and pyroclastic density currents, but not against ash fallout. The Icod Valley, and to a minor extent also the La Orotava valley, is directly exposed to most of TPV hazards, in particular to the gravity driven flows. This study represents a step forward in the evaluation of volcanic hazard at TPV with regard to previous studies, and the results obtained should be useful for intermediate and long-term land-use and emergency planning.  相似文献   

5.
Geomorphologic analysis of submarine and subaerial surface features using a combined topographic/bathymetric digital elevation model coupled with onshore geological and geophysical data constrain the age and geometry of giant landslides affecting the north flank of Tenerife. Shaded relief and contour maps, and topographic profiles of the submarine north flank, permit the identification of two generations of post-shield landslides. Older landslide materials accumulated near the shore (<40-km) and comprise 700 km3 of debris. Thickening towards a prominent axis suggests one major landslide deposit. Younger landslide materials accumulated 40–70 km offshore and comprise the products of three major landslides: the La Orotava landslide complex, the Icod landslide and the East Dorsal landslide complex, each with an onshore scar, a proximal submarine trough, and a distal deposit lobe. Estimated lobe volumes are 80, 80 and 100 km3, respectively. The old post-shield landslide scar is an amphitheatre, 20–25 km wide, partly submarine, now completely filled with younger materials. Age–width relationships for Tenerife's coastal platform plus onshore geological constraints suggest an age of ca. 3 Ma for the old collapse. Young landslides are all less than 560 ka old. The La Orotava and Icod slides involved failures of slabs of subaerial flank to form the subaerial La Orotava and Icod valleys. Offshore, they excavated troughs by sudden loading and basal erosion of older slide debris. The onshore East Dorsal slide also triggered secondary failure of older debris offshore. The slab-like geometry of young failures was controlled by weak layers, deep drainage channels and flank truncation by marine erosion. The (partly) submarine geometry of the older amphitheatre reflects the absence of these features. Relatively low H/L ratios for the young slides are attributed to filling of the slope break at the base of the submarine edifice by old landslide materials, low aspect ratios of the failed slabs and channelling within troughs. Post-shield landslides on Tenerife correlate with major falls in sea level, reflecting increased rates of volcanism and coastal erosion, and reduced support for the flank. Landslide head zones have strongly influenced the pattern of volcanism on Tenerife, providing sites for major volcanic centres.  相似文献   

6.
We propose a long-term volcanic hazards event tree for Teide-Pico Viejo stratovolcanoes, two complex alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka. This is the maximum period that can be investigated from surface geology and also represents an upper time limit for the appearance of the first phonolites on that volcano. The whole process of the event tree construction was divided into three stages. The first stage included the determination of the spatial probability of vent opening for basaltic and phonolitic eruptions, based on the available geological and geophysical data. The second, involved the analysis of the different eruption types that have characterised the volcanic activity from Teide during this period. The third stage focussed on the generation of the event tree from the information obtained in the two previous steps and from the application of a probabilistic analysis on the occurrence of each possible eruption type. As for other volcanoes, the structure of the Teide-Pico Viejo Event Tree was subdivided into several steps of eruptive progression from general to more specific events. The precursory phase was assumed as an unrest episode of any geologic origin (magmatic, hydrothermal or tectonic), which could be responsible for a clear increase of volcanic activity revealed by geophysical and geochemical monitoring. According to the present characteristics of Teide-Pico Viejo and their past history, we started by considering whether the unrest episode would lead to a sector collapse or not. If the sector collapse does not occur but an eruption is expected, this could be either from the central vents or from any of the volcanoes' flanks. In any of these cases, there are several possibilities according to what has been observed in the period considered in our study. In the case that a sector collapse occurs and is followed by an eruption we considered it as a flank eruption. We conducted an experts elicitation judgement to assign probabilities to the different possibilities indicated in the event tree. We assumed long term estimations based on existing geological and historical data for the last 35 Ka, which gave us a minimum estimate as the geological record for such a long period is incomplete. However, to estimate probabilities for a short term forecast, for example during an unrest episode, we would need to include in the event tree additional information from the monitoring networks, as any possible precursors that may be identified could tell us in which direction the system will evolve. Therefore, we propose to develop future versions of the event tree to include also the precursors that might be expected on each path during the initial stages of a new eruptive event.  相似文献   

7.
The structure and volcanic stratigraphy of the Pico Teide–Pico Viejo (PT–PV) formation, deriving from the basanite–phonolite stratovolcanoes PT and PV, and numerous flank vent systems, are documented in detail based on new field and photogeologic mapping, geomorphologic analysis, borehole data, and petrological and geochemical findings. Results provide insight into the structure and evolution of the PT–PV magma system, and the long-term, cyclic evolution of Tenerife's post-shield volcanic complex. The PT–PV formation comprises products of central volcanism, mainly emplaced into the Las Cañadas caldera (LCC), and contemporaneous products from adjacent rifts. PT–PV central volcanic products become more differentiated up-section with felsic lavas dominating the recent output of the system. This is attributed to the evolution of a shallow magma reservoir beneath PT that was emplaced early in the PT–PV cycle on the intra-caldera segment of Tenerife's post-shield rift system. The rift axis has been the focus of PT–PV intrusive and eruptive activity, and has controlled the location of the stratocones. The current geometry of the rifts reflects a major structural reorganisation defining the start of the PT–PV cycle at 0.18 Ma, namely the truncation of the north side of the LCC/LCE by the giant Icod landslide. The internal stratigraphy of the PT–PV formation suggests that PT developed early, with PV developing as a satellite vent. Activity has since alternated between PT and PV due to episodes of vent blockage or chamber sealing. These processes have allowed significant volumes of phonolitic magmas to develop and accumulate within the PT chamber, which have vented through radial dike systems during tumescence episodes and from the rift system, which has permitted lateral magma transport. The PT–PV magma system is a potentially hazardous source of future, felsic eruptive activity on Tenerife.  相似文献   

8.
Quantitative hazard assessments of active volcanoes require an accurate knowledge of the past eruptive activity in terms of eruption dynamics and the stratified products of eruption. Teide–Pico Viejo (TPV) is one of the largest volcanic complexes in Europe, but the associated eruptive history has only been constrained based on very general stratigraphic and geochronological data. In particular, recent studies have shown that explosive activity has been significantly more frequently common than previously thought. Our study contributes to characterization of explosive activity of TPV by describing for the first time the subplinian eruption of El Boquerón (5,660?yBP), a satellite dome located on the northern slope of the Pico Viejo stratovolcano. Stratigraphic data suggest complex shifting from effusive phases with lava flows to highly explosive phase that generated a relatively thick and widespread pumice fallout deposit. This explosive phase is classified as a subplinian eruption of VEI 3 that lasted for about 9–15?h and produced a plume with a height of up to 9?km above sea level (i.e. 7?km above the vent; MER of 6.9–8.2?×?105?kg/s). The tephra deposit (minimum bulk volume of 4–6?×?107?m3) was dispersed to the NE by up to 10?m/s winds. A similar eruption today would significantly impact the economy of Tenerife (e.g. tourism and aviation), with major consequences mainly for the communities around the Icod Valley, and to a minor extent, the Orotava Valley. This vulnerability shows that a better knowledge of the past explosive history of TPV and an accurate estimate of future potentials to generate violent eruptions is required in order to quantify and mitigate the associated volcanic risk.  相似文献   

9.
The Las Cañadas caldera of Tenerife (LCC) is a well exposed caldera depression filled with pyroclastic deposits and lava flows from the active Teide–Pico Viejo complex (TPVC). The caldera's origin is controversial as both the formation by huge lateral flank collapse(s) and multiple vertical collapses have been proposed. Although vertical collapses may have facilitated lateral slope failures and thus jointly contribute to the exposed morphology, their joint contribution has not been clearly demonstrated. Using results from 185 audiomagnetotelluric (AMT) soundings carried out between 2004 and 2006 inside the LCC, our study provides consistent geophysical constraints in favour of multiple vertical caldera collapse. One-dimensional modelling reveals a conductive layer at shallow depth (30–1000 m), presumably resulting from hydrothermal alteration and weathering, underlying the infilling resistive top layer. We present the resistivity distribution of both layers (resistivity images), the topography of the conductive layer across the LCC, as well as a cross-section in order to highlight the caldera's evolution, including the distribution of earlier volcanic edifices. The AMT phase anisotropy reveals the structural and radial characteristics of the LCC.  相似文献   

10.
Continuous monitoring of ground deformation in the volcanic island of Tenerife, Canary Islands, is based on GPS networks, since there are as yet no tiltmeter stations installed on the island. However, there is a world-class astronomical observatory on the island, the El Teide Observatory, where four tiltmeters, two aligned in the North-South and the other two in the East-West, are monitoring the movements of the solar telescope THEMIS. THEMIS (Heliographic Telescope for the Study of Solar Magnetism and Instabilites) is among the three largest solar telescopes in the world. Since THEMIS is located a few kilometers from the main volcanic structures of the island, in particular the El Teide-Pico Viejo stratovolcano, and the precision of the inclinometers is comparable to those used in geophysical studies, we carried out the analysis of the tilt measurements for the period 1997–2006. The tiltmeters at THEMIS are placed in the seventh floor of a tower, hence their sensitivity to geological processes is reduced compared to geophysical installations. However, THEMIS measurements are the only terrestrial data available in Tenerife for such a long period of observations, which include the sustained increase in seismic activity that started in 2001. In this sense, a significant change was found in the East-West tilt of approximately 35 μ-radians between the years 2000 and 2002. Some theoretical models were calculated and it was concluded that such tilt variation could not be due to dike intrusions, nor a volcanic reactivation below the El Teide-Pico Viejo volcano. The most likely explanation comes from dislocations produced by a secondary fault associated to a major submarine fault off the eastern coast of Tenerife. In any case, taking into account the nearly permanent data recording at THEMIS, they could be considered as a complement for any ground deformation monitoring system in the island.  相似文献   

11.
We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on “growing” the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years.  相似文献   

12.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

13.
Te Whaiau Formation is a massive volcaniclastic deposit interbedded within gravelly and sandy volcanogenic sediments of the northwestern Tongariro ring plain. The ca. 0.5-km3 deposit comprises a clay-rich, matrix-supported diamicton with lithological and physical properties that are typical of a cohesive debris-flow deposit. Clays identified in the matrix are derived from hydrothermally altered andesite lava and pyroclastic rocks. The distribution pattern of the deposit, and the nature of the clay matrix, point to a source area that was located in the vicinity of Mt. Tongariro's current summit (1967 m). Most of the proximal zone is buried under late Pleistocene lavas forming the northwestern flank of the massif. In contrast, the medial and distal zones are well exposed to the northwest in the Whanganui River catchment. Lithofacies exposed in these latter zones contain isolated volcaniclastic megaclasts and well-preserved, jointed blocks of andesite. Small hummocks, up to 5 m high, are present only in the distal margins of the deposit. Based on these observations, possible source areas and analogy with similar deposits elsewhere, we infer that Te Whaiau Formation was initiated as a fluid-saturated debris avalanche that transformed downstream into a single, cohesive debris flow. It is interpreted that the mass flow was initially confined to the northwestern flank of Tongariro before spreading laterally onto the lowlands to the northwest. The resulting heterolithological diamicton filled stream channels in the western sector of the Tongariro ring plain. At 15 km from source, the debris flow encountered an elevated terrain, which acted as a barrier to further spreading to the north. The stratigraphy of the cover beds and K/Ar data on an underlying lava indicate that Te Whaiau Formation was emplaced between 55 and 60 ka, a cool period characterized by intense volcaniclastic sedimentation around the Tongariro massif. Jigsaw-fit fractured volcanic bombs suggest that an explosive eruption through hydrothermally altered rock and pyroclastic deposits probably triggered the mass flow. The characteristics of the deposit indicate that a large portion of the proto-Tongariro edifice collapsed en masse to form the initial avalanche. Hence, we infer that the current morphology of Tongariro volcano is derived not only from glacial erosion, but also from gravitational failure. Prehistoric eruptions and current geothermal activity on the upper northern and western slopes of the Tongariro massif suggest that avalanche-induced debris flows must be considered a potential future volcanic hazard for the region.  相似文献   

14.
The May 22, 1915 eruptions of Lassen Peak involved a volcanic blast and the emplacement of three geographically and temporally distinct lahar deposits. The volcanic blast occurred when a Vulcanian explosion at the summit unroofed a shallow magma source, generating an eruption cloud that rose to an estimated height of 9 km above sea level. The blast cloud was probably caused by the collapse of a small portion of the eruption column; absence of a flank vent associated with these eruptions argues against it originating as an explosion that has been directed by vent geometry or location. The volcanic blast devasted 7 km2 of the northeast flank of the volcano, and emplaced a deposit of juvenile tephra and accidental lithic and mineral fragments. Decrease in blast deposit thickness and median grain size with increasing distance from the vent suggests that the blast cloud lost transport competence as it crossed the devastated area. Scanning electron microscope examination of pyroclasts from the blast deposit indicates that the blast cloud was a dry, turbulent suspension that emplaced a thin deposit which cooled rapidly after deposition. Lahar deposits were emplaced primarily in Lost Creek, with minor lahars flowing down gullies on the west, northwest and north flanks of the volcano. The initial lahar was apparently triggered early in the eruption when the blast cloud melted the residual snowpack as it moved down the northeast flank of the peak. The event that triggered the later lahars is enigmatic; the presence of approximately five times more juvenile dacite bombs on the surface of the later lahars suggests that they may have been triggered by a change in eruption style or dynamics.  相似文献   

15.
A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable “wet” character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides.  相似文献   

16.
长白山天池火山造锥粗面岩新的K-Ar年龄   总被引:1,自引:0,他引:1  
根据采集样品的野外产状,结合前人对天池火山造锥阶段粗面岩时代的研究以及本文给出的新的K-Ar年龄,比较了天池火山北坡和东北坡的造锥粗面岩喷发时代,分析了不同期次喷发的粗面岩的覆盖范围,发现天池火山东北坡粗面岩年龄明显新于北坡粗面岩年龄。天池火山东北坡造锥阶段粗面岩的最老年龄距今0.38Ma,属于中更新世晚期,是第3造锥阶段的喷发物。在东北坡未发现第1造锥和第2造锥阶段的喷发物。新给出的天池火山北侧和东侧2个钻孔资料表明,天池火山造锥粗面岩喷发之前存在距今约2Ma和约1Ma左右的更早期的粗面岩喷发过程。造锥阶段碱流质岩浆喷发持续时间可能在距今0.190~0.0192Ma  相似文献   

17.
The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams.Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride–sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH0) chloride–sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2–1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincón de la Vieja.The distribution of thermal water types at Rincón de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincón de la Vieja volcano.  相似文献   

18.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

19.
The Las Cañadas caldera wall and the outer slopes of the caldera provide three-dimensional exposures of numerous proximal-welded fallout deposits and have been mapped in detail. As a result, some parts of the Ucanca and Guajara Formations of the stratigraphy of Martí et al. (1994) have been divided into members that correspond to individual eruptions. Mapping has also revealed the occurrence of conduit-vent structures associated with proximal-welded fallout deposits. Conduit-vent structures consist of an upper flaring area and a lower narrow conduit. Conduit-vent geometry and dimensions include cylindrical plugs and eruptive fissures steeply dipping towards the caldera depression and elongated vents. The flaring area can be rather asymmetric and is usually filled by down-vent rheomorphic flow of the proximal fallout deposit. The lower conduits are filled by lava plug, agglutination of juveniles onto conduit walls and dyke intrusion with eventual dome extrusion. The eruption dynamics of welded fallout deposits and magma fragmentation within the conduit are consistent with an evolution from explosive to effusive. In this context conduit flow regimes evolve from turbulent to annular flow in which the conduit is progressively choked, and laminar flow leading to the final conduit closure.  相似文献   

20.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号