首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
礼县 -罗家堡断裂带晚更新世以来有过明显活动。在礼县—罗家堡段和天水镇—街子口段直接错断全新世地层。断裂沿线地表陡坎发育 ,水系被左旋位错。结合沿该断裂带广泛分布的地震滑坡、砂土液化等 ,认为礼县 -罗家堡断裂带是 1654年天水南 8级地震的发震构造。该断裂晚更新世以来的平均水平位错速率为 0 95mm/a ,平均垂直位移速率为 0 35mm/a ,垂直位移速率约为水平位移速率的 1/ 3。这个比值与一次断裂突发性垂直位错量 ( 1 9m)与水平位错量 ( 5 2m)的比值基本吻合  相似文献   

2.
1654年7月21日甘肃省礼县8级地震发生在南北地震带的中北段,该地区的构造变形和构造活动与青藏高原向北东方向的扩展密切相关,复杂的构造几何特征主要受控于东昆仑断裂、西秦岭北缘断裂和一系列北东向断裂.礼县—罗家堡断裂为一条北东东向的左旋走滑活动断裂,错断了含有仰韶文化红色陶瓷片的一级阶地堆积物,阶地面上断层陡坎高约1.5m.沿断裂带发现冲沟的左旋位错量为3~10m,晚更新世黄土中残留的断层陡坎高4.5~8m.其中两条冲沟中发现裂点,高3.5~3.9m,距断层陡坎的距离为16m.礼县—盐关—罗家堡—天水镇一带发育大量的滑坡,长轴走向与礼县—罗家堡断裂一致,滑坡体后缘、侧壁陡峭,出露晚第四纪黄土,鲜有植被覆盖.礼县—罗家堡断裂为1654年8级地震的发震断裂.综合分析认为,受青藏高原向北东方向的扩展,被西秦岭北缘断裂、礼县—罗家堡断裂和岷县—宕昌断裂围限的礼县次级地块向南东滑动可能导致了1654年礼县8级地震的发生.断裂北、南两侧地壳电性结构的差异为强震的孕育提供了深部构造条件.  相似文献   

3.
龙门山断裂带晚第四纪活动性分段的初步研究   总被引:21,自引:3,他引:21  
NE向展布于松潘-甘孜造山带与扬子陆块之间的龙门山断裂带,是由后山断裂等4条主干断裂及其控制的冲断构造岩片组成的具前展式发育特点的推覆构造带。它形成于印支运动,此后多次活动,第四纪以来活动强烈,但不同地段活动程度具有明显的非均一性。根据地貌、地质构造、布格重力异常和地震活动等资料的综合分析研究认为:1)以位于虎牙—北川—安县一线的近SN向虎牙断裂和擂东断裂为界划分出断裂带西南段和东北段,其活动性迥然不同,西南段晚更新世以来活动强烈,中小地震频繁;东北段第四纪活动微弱,仅偶有小震分布。2)在青藏高原被挤压隆升和块体侧向滑移的作用下,川青地块向SEE滑动,使它东缘发育的岷山隆起与被其截切的龙门山断裂带西南段一起构成了川青地块东部的活动边界,而龙门山断裂带东北段则被遗弃  相似文献   

4.
普遍认为礼县-罗家堡断裂带是一条晚第四纪活动断裂,是1654年天水南8级大地震的发震构造。但该断裂带西段宕昌-黄咀段的活动证据一直以来不是很明确。笔者在进行某项目近场地质调查中,发现一些该断裂段的最新地貌活动证据,认为该断裂段在全新世有过明显活动。  相似文献   

5.
2013年4月20日在龙门山断裂南段发生的芦山M7.0级地震已过去近1年.本文根据四川省地震台网资料和收集的国内外相关历史资料,研讨了巴颜喀拉地块东缘区域龙门山断裂、岷江断裂、虎牙断裂等历史地震活动;分析了龙门山断裂带2008年5月12日汶川8.0级和2013年4月20日芦山7.0级地震余震时空、震源机制及破裂扩展等特征;讨论了巴颜喀拉地块东缘区域的能量释放特征等.结果表明:(1)芦山7.0级地震西南的龙门山断裂南段仍存在尚未破裂的背景性破裂空段;(2)芦山7.0级地震与汶川8.0级地震两余震区之间的空段区存在能量待释放;(3)龙门山断裂中北段(在汶川余震区内)的北川附近存在能量释放不充分的局部区域.  相似文献   

6.
四川省芦山MS7.0地震发震构造分析   总被引:5,自引:3,他引:2  
2013年4月20日的芦山“4·20”MS7.0地震发生在龙门山断裂带西南段,震中地区分布多条NE向断裂,构造较为复杂.这次地震震源机制解显示为逆冲型地震,破裂面为NE走向,与龙门山断裂带的运动性质和走向一致.地表调查只在大川-双石断裂(前山断裂)和新开店断裂(大邑断裂南段)发现局部分布的NE向地表裂缝、沿地表裂缝分布的喷砂冒水和砂土液化,不规则的边坡开裂等地表变形,以及断裂沿线较严重的滑坡崩塌和房屋破坏.野外调查没有发现明显的地震地表破裂.GPS测量结果显示,此次地震的发震断裂位于芦山县城附近或其以东,而芦山西侧的断裂也可能参与了部分活动.根据野外地质调查、GPS观测、震源机制解、震源深度、余震分布等结果综合判定,芦山7.0级地震的主要发震构造是芦山之下、大川-双石断裂和新开店断裂之间的龙门山前缘滑脱带.此滑脱带在该段的运动导致了这次地震的发生,并可能带动了它上面的大川-双石和新开店等断裂的活动.  相似文献   

7.
2008年5月12日四川龙门山断裂带发生了汶川8.0级地震,之后四川境内发生了两次7.0级地震(其中一个是芦山地震),为了研究汶川地震之后龙门山断裂带及周边区域的地震活动性,本研究收集了国家地震台网和四川区域地震台网2010年1月1日—2017年12月31日四川地区发生的17次M≥5.0地震以及120多次5.0>M≥4.0地震的波形资料,利用波形拟合法反演了震源机制解及区域应力场.反演结果显示,位于龙门山断裂带上的地震,震源机制以逆冲型为主,鲜水河断裂带地震震源机制以走滑型为主,而川滇块体西南部的理塘断裂、金沙江断裂附近,震源机制解以正断层为主.根据震源机制解反演得到的龙门山地区、鲜水河地区的主压应力场方向为WNW、近EW向.川滇块体的巴塘、理塘等地区,其主压应力轴方向为12°左右,接近SN向,且仰角接近40°左右.本研究利用面波振幅谱特征对震源深度进行了精确定位,定位结果与中国地震台网中心(CENC),美国地震调查局(USGS),国际地震中心(ISC)等机构地震目录进行了对比.结果显示,四川地区强震震源深度主要分布在20km以上的中上地壳.龙门山地区震源优势分布在10~20km,鲜水河断裂地震震源深度在10km左右,川滇块体西南部的理塘断裂,巴塘断裂,金沙江断裂等地区,震源深度一般在5~10km范围.  相似文献   

8.
为揭示汶川地震前龙门山及其周缘断裂的形变与应力累积状态,文中构建了包含龙门山、龙日坝、岷江和虎牙4条断裂的三维黏弹性有限元模型,以1999—2004年GPS结果为约束,模拟了龙门山断裂带及其周缘区域的形变运动。得到以下结论:1)平行于龙门山断裂带的速度分量主要被龙日坝断裂吸收,垂直于龙门山断裂带的速度分量主要被其自身吸收;岷江和虎牙断裂对龙门山断裂带北段起到一定的屏障作用,导致其北段压缩量明显低于南段。2)沿龙门山断裂带由SW向NE方向延伸,主压应力与断层走向的夹角由接近垂直逐步转至约45°;断层南段挤压、剪切应力累积速率高,且压应力大于剪应力,北段应力累积速率低,压应力与剪应力接近。这与龙门山断裂带SW段中小地震频发、地震活动强烈,NE段偶有小震、地震活动微弱相吻合;也与汶川M_S8.0地震逆冲兼具右旋走滑、芦山M_S7.0地震逆冲破裂的方式相一致。3)假设发生震级、类型相同的地震所需应力积累量相同,那么研究区内岷江断裂、龙门山断裂南段和虎牙断裂破裂以逆冲运动为主,3条断裂的地震复发周期依次变长;龙日坝断裂北段和龙门山断裂北段以逆冲兼具右旋走滑为主,前者地震复发周期短于后者;龙日坝断裂南段则以纯右旋走滑为主,地震复发周期有可能最短。  相似文献   

9.
基于青藏高原东北缘密集宽频带野外流动观测台阵以及固定台站资料,利用双差层析成像方法对地震位置和研究区的地壳速度结构进行了反演.最终用于联合反演的地震事件合计9644个.结果显示青藏高原东北缘速度结构具有明显的横向不均匀性.从整体上看,青藏高原地区表现为低速异常,鄂尔多斯表现为高速异常,而扬子地块亦表现为高速异常.不同深度处速度结构表现不一致,同一深度处P波速度结构和S波速度结构也有明显差异.由西秦岭北缘断裂带、临潭-宕昌断裂以及礼县-罗家堡断裂围限的地震活动强烈的区域中,P波速度结构由深度0 km时呈现的低速异常,逐渐过渡到5 km时高低速相间分布的特征;而S波速度结构在此区域中,由近地表0 km时高低速相间分布的特征,逐渐过渡到30 km时几乎表现为低速异常.2017年8月8日九寨沟7级地震所在的塔藏断裂、岷江断裂和雪山断裂围限区域,在深度20 km处的P波速度结构和周围存在明显差异,九寨沟地震处于高速异常与低速异常的过渡带内.此外,2013年7月22日发生在青藏高原东北缘的岷漳县6.6级地震,震源区所在的临潭-宕昌断裂附近的P波速度结构在15 km深度处也有明显特征,震源位置所在区域也处于高低速过渡带.该区域这种地壳内部高低速过渡带可能是应力比较容易积累而发生中强地震的一个重要场所.  相似文献   

10.
以中国地震台网中心地震目录中的事件为模板地震,通过滑动窗口的波形互相关方法对布设在灌县—安县断裂周边17个流动地震台的连续地震记录进行处理,识别ML0.0以上的重复地震. 然后使用结合波形互相关技术的双差算法对这些地震进行重定位,获得了243次地震的重定位结果. 结果表明: 在研究时段内,灌县—安县断裂的地震活动性呈减弱趋势; 地震震源的优势分布深度为5—15 km,震源深度剖面显示地震呈高角度向西倾斜分布; 地震震中沿NE向分布,与龙门山前山断裂的走向基本一致; 研究区内南、 北两段的地震活动性及b值存在差异,这可能与龙门山断裂带中段区域应力方向由南到北发生的WNW向到ENE向转换的构造作用密切相关.   相似文献   

11.
Research on the relationship between faults and seismicity in the junction area of China's north-south seismic belt and central orogenic belt based on the Geography Information System (GIS) has been done.For each of the 16 faults in this area,we build a 25km buffer zone and use overlay analysis to investigate the seismicity and its characteristics on each fault.The results unveil the main seismic faults as follows:the western segment of the northern-edge of the west Qinling fault,the southwestern segment of the Lixian-Luojiabao fault,the southeastern segment of the Lintan-Dangchang fault,the southwestern segment of the Wenxian fault,the Huya fault,and the Xueshan fault.The most active faults are the Huya and Xueshan faults,then the Tazang fault,the Lixian-Luojiabao fault and the northern piedmont of the Guanggaishan-Dieshan fault.The research zone can be divided into four areas according to focal depth,which gets deeper from north to south.The profile of focal depth indicates the geometry and mechanical property of faults,and further reveals the movement model of eastward extrusion of the Tibetan plateau and southeastward escape of masses,thus providing basis for the protection against earthquakes and hazard mitigation in this area.  相似文献   

12.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

13.
华南滨海断裂带地震危险性的数学模拟   总被引:5,自引:1,他引:5  
华南滨海断裂带是南海北部规模巨大的活动断裂,其地震危险性的确定将为地震几地震工程提供地质背景依据,应用二维有限元分析和正交设计法反演南海北部及其今近地区的构造应力场,探讨可能发震的危险地段。研究结果表明,滨海断裂带的某些地段,尤其是滨海断裂带被NW向断裂切割的部位有一定的地震危险性。南海北部地区最主要的地震威胁来自巴士系断裂带和珠江口盆地南缘的NWW向断裂带,对华南滨海断理解带潜在的地震危险性不宜  相似文献   

14.
沂沭断裂带重力场及地壳结构特征   总被引:5,自引:2,他引:3  
沂沭断裂带为郯庐断裂带山东段,新构造运动显著,是华北地区的强震活动带之一。文中收集了该地区的布格重力数据,利用小波多尺度分析方法对重力场进行有效分离,研究区域地壳结构特征及断裂空间展布,并应用Parker变密度模型对区域莫霍面进行反演分析,得到以下几点结论:1)重力区域场显示,沂沭断裂带形成了NNE走向的大型重力梯度带,分隔了鲁西、鲁东地块,成为区域内重要的地球物理分界线。2)重力局部场显示,中上地壳结构复杂,沂沭带内部呈现两堑一垒的重力异常格局,5条主干断裂形成线性梯度带分布于东、西地堑内,鲁西块体的多条NW向活动断裂交切于沂沭断裂带,多数断裂只交切于西地堑,而蒙山山前断裂和苍尼断裂横穿沂沭断裂带;下地壳结构相对简单,发生明显的褶曲构造,表现出大规模高、低密度异常相间排列的典型特征。3)区域莫霍面形态东高西低,沂沭断裂带形成了莫霍面陡变带,造成了东西分异格局,潍坊东—莒县—临沂一线出现莫霍面上隆区,具有强震发生的深部孕震环境。4)区域内地震多发于高、低重力异常转化带之间,特别是活动断裂对应的重力梯度条带之上,地震的发生与断裂活动有着密切的关系,沂沭断裂带地震活动性最强,且东地堑强于西地堑。  相似文献   

15.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

16.
韩渭宾  蒋国芳 《地震》2005,25(1):51-57
通过与更早地震资料的对比, 研究了鲜水河断裂带, 川滇地壳块体东带、 西带, 松潘、 龙门山断裂带以及整个川滇地区较长时间尺度的地震活动盛衰交替性。 结果表明, 川滇东带北段(鲜水河断裂带)、 松潘、 龙门山地震带及川滇西带中段和南段(主要是红河断裂带)的地震活动具有明显的几十到百年尺度的盛衰交替性。 而川滇东带中南段(安宁河-则木河-小江断裂带)与川滇西带北段(金沙江断裂带)在上述地震带的平静期里, 中强以上地震频次明显减少, 但有个别7级以上强震发生。 这样, 整个川滇地区地震活动的盛衰交替性呈现一种比较复杂的阶段性特征: 伴随频繁中强震的强震活跃期与突发强震活动期交替出现。 值得注意的是, 川滇地区从19世纪末开始的伴随频繁中强震的强震活跃期已超过百年, 目前出现长期平静, 应注意进入突发强震活动期的可能性。 根据川滇地区上一个突发强震活动期突发强震的空间分布, 推测未来的突发强震可能发生在南北向断裂带, 或其他方向断裂带与南北向断裂带的交汇部。 文中还对上述统计现象的机理作了简要讨论。  相似文献   

17.
In this paper, the double difference seismic tomography method is applied to the phase arrival times of 7 465 seismic events to determine the hypocenter parameters of events as well as detailed 3D velocity structure at the northern segment of Xiaojiang Fault and its surrounding area. The data was recorded by 42 stations of the Jinshajiang River network from August 2013 to November 2016. At 2~6km, VP and VS present low velocity anomalies along the northern segment of Xiaojiang Fault, and the VS anomaly is especially remarkable. On both sides of the Xiaojiang Fault, there also exist obvious P and S wave low velocity areas. These low velocity areas correspond to the terrain, lithology distribution and the watershed of Jinsha River at shallower layer in the study area. Starting from 6km, a NE-directed high VP band along Zhaotong-Ludian and Huize-Yiliang Fault is formed on the eastern side of the northern segment of Xiaojiang Fault. VS also shows the high value in the area bounded by Lianfeng Fault, Baogunao-Xiaohe Fault and Huize-Yiliang Fault. Above 10km depth, to the west side of the Xiaojiang Fault including the Ninghui Fault, VP shows a significant low-velocity anomaly, while to the east side it presents high velocity feature. The Xiaojiang fault zone shows a significant low VP from north to south in the study region, and the low velocity anomaly in the northern segment is relatively significant, especially the low velocity anomaly area reaches 15km deep around Qiaojia area. Beneath the Baihetan Dam, a significant low VP area reaching to 5km deep is found. The earthquakes around the dam formed a strip from shallow to deep on the low-velocity area side. Whereas, a stable high-velocity area is found under the Wudongde Dam. The events relocation result shows that:all the focal depths in the study area are shallower than 20km, and the predominant focal depth is within 15km. Different from the NE-trending of the major faults in the study area, the relocated seismic events are obviously distributed nearly east-west along Matang Fault and Daduo Fault and the region around Huize. The focal depths of MS6.5 Ludian earthquake sequences are shallower than 15km, and mostly less than 10km. The aftershocks within 2a after the Ludian M6.5 earthquake form two predominant bands of about 40km and 20km along near EW and SN direction, respectively.  相似文献   

18.
基于九寨沟MS7.0地震的破裂模型及均匀弹性半空间模型,本文计算了该地震在周围主要活动断层上产生的库仑应力变化、在周围地区产生的应力场和位移场和同震库仑应力变化对余震的触发.结果表明:(1)九寨沟地震造成虎牙断裂中段库仑破裂应力有较大增加,已经超过0.01 MPa的阈值,虎牙断裂北段、塔藏断裂中段和岷江断裂北段北部的库仑破裂应力有较大降低,因此尤其要注意虎牙断裂中段的危险性.(2)水平面应力场在该地震震中东西两侧增加(拉张),张应力起主要作用.在震中南北两侧降低(压缩),压应力起主要作用.从水平主压和主张应力方向来看,均呈现出条形磁铁的磁场形态.从剖面上的应力场来看,在上盘的面膨胀区域内,大部分点的主张应力方向与地表是垂直的,在其他区域内,主张应力和主压应力均以震中为中心,向外呈辐射状.(3)从地表水平位移场来看,震中东西两侧物质朝震中位置汇聚,南北两侧物质向外流出,在震中处的最大水平位移量达43 mm.从地表垂直位移场来看,震中南北两侧出现明显的隆升,隆升最大值达56.8 mm.震中东西两侧出现明显的沉降,沉降最大值达74.5 mm.从剖面的位移场来看,九寨沟地震为左旋走滑地震,且有一定的正断成分.由分析可以推测该断层破裂在大致22~26 km的深度上就截止了.并推测下盘物质运动的动力来自震源北东东方向(四川块体)深度在6~30 km的下盘下层物质,上盘物质运动的动力来自震源北西西方向(巴颜喀拉块体)深度在0~6 km的上盘上层物质.(4)通过计算不同深度上主震对余震的触发作用可知,主震后的最大余震受到了主震的触发作用,多数其他余震也受到主震的触发作用.主震的发生促使了库仑应力增加地区余震的发生,抑制了一部分库仑应力减少地区余震的发生.  相似文献   

19.
In order to reveal the deformation and cumulative stress state in Longmenshan and its adjacent faults before Wenchuan earthquake,a 3D viscoelastic finite element model,which includes Longmenshan,Longriba,Minjiang and Huya faults is built in this paper.Using the GPS measurement results of 1999-2004 as the boundary constraints,the deformation and movement of Longmenshan fault zone and its adjacent zones before Wenchuan earthquake are simulated.The conclusions are drawn in this paper as follows:First,velocity component parallel to Longmenshan Fault is mainly absorbed by Longriba Fault and velocity component perpendicular to the Longmenshan Fault is mainly absorbed by itself.Because of the barrier effect of Minjiang and Huya faults on the north section of Longmenshan Fault,the compression rate in the northern part of Longmenshan Fault is lower than that in the southern part.Second,extending from SW to NE direction along Longmenshan Fault,the angle between the main compressive stress and the direction of the fault changes gradually from the nearly vertical to 45 degrees. Compressive stress and shear stress accumulation rate is high in southwest segment of Longmenshan Fault and compressive stress is greater;the stress accumulation rate is low and the compressive stress is close to shear stress in the northeast segment of the fault.This is coincident with the fact that small and medium-sized earthquakes occurred frequently and seismic activity is strong in the southwest of the fault,and that there are only occasional small earthquakes and the seismic activity is weak in the northeast of the fault.It is also coincident with the rupture type of thrust and right-lateral strike-slip of the Wenchuan earthquake and thrust of the Lushan earthquake.Third,assuming that the same type and magnitude of earthquake requires the same amount of stress accumulation,the rupture of Minjiang Fault,the southern segment of Longmenshan Fault and the Huya Fault are mainly of thrust movement and the earthquake recurrence period of the three faults increases gradually.In the northern segment of Longriba Fault and Longmenshan Fault,earthquake rupture is of thrusting and right-lateral strike-slip. The earthquake recurrence period of former is shorter than the latter.In the southern segment of Longriba Fault,earthquake rupture is purely of right-lateral strike-slip,it is possible that the earthquake recurrence period on the fault is the shortest in the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号