首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orbital motion of the Sun has been linked with solar variability, but the underlying physics remains unknown. A coupling of the solar axial rotation and the barycentric orbital revolution might account for the relationships found. Some recent published studies addressing the physics of this problem have made use of equations from rotational physics in order to model particle motions. However, our standard equations for rotational velocity do not accurately describe particle motions due to orbital revolution. The Sun's orbital motion is a state of free fall; in consequence, aside from very small tidal motions, the associated particle velocities do not vary as a function of position on or within the body of the Sun. In this note, I describe and illustrate the fundamental difference between particle motions in rotation and revolution, in order to dispel some part of the confusion that has arisen in the past and that which may yet arise in the future. This discussion highlights the principal physical difficulty that must be addressed and overcome by future dynamical spin–orbit coupling hypotheses.  相似文献   

2.
The prediction of a time series using a neural network involves an optimum state-space reconstruction. The state space of the daily 10.7-cm solar radio flux is reconstructed using an information theory approach. A multi-layer feed-forward neural net is used for short-term prediction of the time series. The convergence of the synaptic weights is obtained partially by simulated annealing and partially by the 'quick prop' variation of back-propagation. The result gives a reasonably accurate short-term prediction.  相似文献   

3.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

4.
We experiment with a method of measuring the frequency of solar p modes, intended to extend the passband for the variations of the frequency spectrum as high as possible. So far this passband is limited to a fraction of μ Hz for the classical analysis based on numerical fits of a theoretical line profile to a power spectrum averaged over periods lasting at least several weeks. This limit for the present analysis can be shifted to the mHz range, corresponding to some of the “5 min” oscillations, but in this range we use a lower resolution which allows us to separate odd and even p modes. We show an example of the results for long term variations and apply this analysis to search for a modulation of the p‐mode frequency spectrum by asymptotic series of solar g modes. A faint signal is found in the analysis of 10 years of GOLF data. This very preliminary result possibly indicates the detection of a small number of g modes of degree l = 1. A tentative determination of an observational value of the parameter P0 follows. P0 is the scaling factor of the asymptotic series of g modes and is a key data for solar core physics. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Using high cadence, high resolution near infrared (NIR) observations of the X10 white‐light flare (WLF) on 2003 October 29, we investigated the evolution of the core‐halo structure of white‐light emission during the two‐second period flare peak. We found that size and intensity of the halo remained almost constant in the range of 10 Mm2. However, the core area was very compact and expanded rapidly from about 1 Mm2 to 4 Mm2. At the same time, the total emission of the core increased nearly twenty times. This distinct behavior indicates that different heating mechanisms might be responsible for core and halo emissions. In addition to the temporal analysis, we compared the intensity enhancements of the flare core and halo. The result shows that the halo contrast increased by about 8% compared to the flare‐quiet region, which could be explained by a combination of direct‐heating and backwarming models (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
I present and discuss the fitting methodology I developed for very‐long time series (2088‐day‐long). This new method was first used to fit low degree modes, 𝓁 ≤ 25. That time series was also sub‐divided in somewhat shorter segments (728‐daylong) and also fitted for these low degrees, in order to measure changes with the solar activity level. I have recently extended the fitting in several “directions”: 1) to substantially higher degrees (𝓁 ≤ 125), 2) to shorter time series (364‐ and 182‐day‐long), and, 3) to additional 728‐day‐long segments, covering now some 10 years of observations. I present and discuss issues related to this expansion, namely problems at low frequencies affecting the f and p1 modes, and the inadequacy of the leakage matrix at higher degrees. I also present some of the characteristics of the observed temporal changes in the resulting frequencies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
The reconstruction of the solar activity during some years of the 18th century is poorly known because there are scarce sunspot observations. The aim of this short contribution is to present a “lost” sunspot observation realized by the Portuguese scientist Sanches Dorta during his observation of the solar eclipse of 1785 from Rio de Janeiro (Brazil). This record was not included in the database compiled by Hoyt and Schatten (1998). We present new estimations of the solar activity during 1785. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Nowadays, g‐mode detection is based upon a priori theoretical knowledge. By doing so, detection becomes more restricted to what we can imagine. De facto, the universe of possibilities ismade narrower. Such an approach is pertinent for Bayesian statisticians. Examples of how Bayesian inferences can be applied to spectral analysis and helioseismic power spectra are given. Our intention is not to give the full statistical framework (much too ambitious) but to provide an appetizer for going further in the direction of a proper Bayesian inference, especially for detecting gravity modes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Sun is the only star for which individual surface features can be observed directly. For other stars, the properties of starspots, stellar rotation, stellar flares, etc, are derived indirectly via variation of star‐integrated spectral line profiles or their luminosity measurements. Solar disk‐integrated and disk‐resolved observations allow for investigations of the contribution of individual solar disk features to sun‐as‐a‐star spectra. Here, we provide a brief overview of three sun‐as‐a‐star programs, currently in operation, and describe recent improvements in observations and data reduction for the Integrated Sunlight Spectrometer (ISS), one of three instruments comprising the Synoptic Optical Long‐term Investigations of the Sun (SOLIS) system. Next, we discuss studies employing sun‐as‐a‐star observations (including Ca II K line as proxy for total unsigned magnetic flux and 2800 MHz radio flux) as well as the effects of flares on solar disk‐integrated spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The theory of periodical shear flow is applied for the exploration of the effect of solar granulation on highfrequency waves in the solar photosphere. It is shown that upgoing and downgoing waves are trapped in intergranular spaces and granules, respectively. Upgoing waves in fast downflows are unstable. The theory is in a good agreement with observations.  相似文献   

13.
Solar long-term activity runs at high latitudes in three ways: (i) in phase with solar long-term activity at low latitudes; (ii) in antiphase with solar long-term activity at low latitudes and (iii) does not follow either (i) or (ii), and mainly occurs around the times of maxima of (i) and (ii). In the present study, we investigate the north–south asymmetry of solar activity at high latitudes and found the following. In Case (i), high-latitude filament activity, for example, is inferred to have the same dominant hemisphere as low-latitude activity in a cycle. In Case (ii), the north–south asymmetry of high-latitude activity, represented by both the polar faculae and the Sun's polar field strength, is usually different from that of low-latitude activity in a sunspot cycle, and even in a cycle of high-latitude activity (polar faculae and the Sun's polar field strength), suggesting that the north–south asymmetry of solar activity at high latitudes should have little or no connection with that of low latitudes. In Case (iii), the north–south asymmetry of solar activity at high latitudes (polar flares) should have little connection with that at low latitudes as well. The observed magnetic field at high latitudes is inferred to consist of two components: one comes from the emergence of the magnetic field from the Sun's interior and the other comes from the drift of the magnetic activity at low latitudes.  相似文献   

14.
15.
We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metshovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the SodankyläGeophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi‐instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April–October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi‐frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15‐hour unique solar observations possible during summer time. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
Elemental abundances of the superficially normal early and middle B starsζ Dra, ε Lyr, 8 Cyg and 22 Cyg are derived, consistent with previous studies in this series, using spectrograms obtained with Reticon and CCD detectors. Almost all of the derived metal abundances are found to be solar within the errors of the analysis. However, the He/H ratios are slightly greater than solar.  相似文献   

18.
Magnetohydrodynamic (MHD) waves in solar coronal loops, which were previously only predicted by theory have actually been detected with space‐borne instruments. These observations have given an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. This paper will illustrate how information about the magnetic and density structure along coronal loops can be determined by measuring the frequency or amplitude profiles of standing fast kink mode oscillations. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We quantify the galaxy environments around a sample of 0.5≤ z ≤0.8 radio-quiet quasars using the amplitude of the spatial galaxy–quasar correlation function, B gq. The quasars exist in a wide variety of environments; some sources are located in clusters as rich as Abell class 1–2 clusters, whereas others exist in environments comparable to the field. We find that, on average, the quasars prefer poorer clusters of ≈Abell class 0, which suggests that quasars are biased tracers of mass compared with galaxies. The mean B gq for the sample is found to be indistinguishable from the mean amplitude for a sample of radio-loud quasars matched in redshift and optical luminosity. These observations are consistent with recent studies of the hosts of radio-quiet quasars at low to intermediate redshifts, and suggest that the mechanism for the production of powerful radio jets in radio-loud quasars is controlled by processes deep within the active galactic nucleus itself, and is unrelated to the nature of the hosts or their environments.  相似文献   

20.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号