首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Approximately 100 m of impactites were retrieved from the ICDP borehole Yaxcopoil‐1 (Yax‐1), located ~60 km south‐southwest from the center of the Chicxulub impact crater on the Yucatán Peninsula of Mexico. Here, we characterize and discuss this impact breccia interval according to its geochemical characteristics. Chemical analysis of samples from all five recognized breccia units reveals that the impactites are of heterogeneous composition with regard to both major and trace elements at the single sample (8–16 cm3) scale. This is primarily due to a strong mixing relationship between carbonate and silicate fractions. However, averaged compositions for suevitic units 1 to 3 are similar, and the silicate fraction (after removal of the carbonate component) indicates thorough mixing and homogenization. Analysis of the green melt breccia horizon, unit 4, indicates that it contains a distinct mafic component. Large brown melt particles (in units 2, 3, and 4) represent a mixture of feldspathic and mafic components, with high CaO abundances. Unit 5 shows the greatest compositional diversity, with highly variable abundances of SiO2, CaO, and MgO. Inter‐sample heterogeneity is the result of small sample size combined with inherent heterogeneous lithological compositions, highly variable particle size of melt and lithic components, and post‐depositional alteration. In contrast to samples from the Y6 borehole from closer to the center of the structure, Yax‐1 impactites have a strong carbonate component. Elevated loss on ignition, Rb, and Cs contents in the upper two impactite units indicate strong interaction with seawater. The contents of the siderophile elements, including Ni, Co, Ir, and Cr, do not indicate the presence of a significant extraterrestrial component in the Yax‐1 impactites.  相似文献   

2.
Abstract— We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post‐impact carbonate sequence conducted on samples recovered by Yaxcopoil‐1 (Yax‐1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the post‐impact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán‐6 and Chicxulub‐1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán‐6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post‐impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.  相似文献   

3.
Abstract— The chemical composition of suevites, displaced Cretaceous target rocks, and impact‐generated dikes within these rocks from the Yaxcopoil‐1 (Yax‐1) drill core, Chicxulub impact crater, Mexico, is reported and compared with the data from the Yucatán 6 (Y6) samples. Within the six suevite subunits of Yax‐1, four units with different chemical compositions can be distinguished: a) upper/lower sorted and upper suevite (depth of 795–846 m); b) middle suevite (depth of 846–861 m); c) brecciated impact melt rock (depth of 861–885 m); and d) lower suevite (depth of 885–895 m). The suevite sequence (a), (b), and (d) display an increase of the CaO content and a decrease of the silicate basement component from top to bottom. In contrast, the suevite of Y6 shows an inverse trend. The different distances of the Yax‐1 and Y6 drilling sites from the crater center (~60, and ~47 km, respectively) lead to different suevite sequences. Within the Cretaceous rocks of Yax‐1, a suevitic dike (depth of ~916 m) does not display chemical differences when compared with the suevite, while an impact melt rock dike (depth of ~1348 m) is significantly enriched in immobile elements. A clastic breccia dike (depth of ~1316 m) is dominated by material derived locally from the host rock, while the silicate‐rich component is similar to that found in the suevite. Significant enrichments of the K2O content were observed in the Yax‐1 suevite and the impact‐generated dikes. All impactites of Yax‐1 and Y6 are mixtures of a crystalline basement and a carbonate component from the sedimentary cover. An anhydrite component in the impactites is missing (Yax‐1) or negligible (Y6).  相似文献   

4.
Abstract As part of the ICDP Chicxulub Scientific Drilling Project, the Yaxcopoil‐1 (Yax‐1) bore hole was drilled 60 km south‐southwest of the center of the 180 km‐diameter Chicxulub impact structure down to a depth of 1511 m. A sequence of 615 m of deformed Cretaceous carbonates and sulfates was recovered below a 100 m‐thick unit of suevitic breccias and 795 m of post‐impact Tertiary rocks. The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact‐induced brittle damage and post‐impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360°‐core scans and dip‐meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub‐units were discriminated. Brittle deformation is most intense at the top of the sequence and at 1300–1400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called “paraconglomerate.” Abundant organic matter in the Yax‐1 core was present before the impact and was mobilized by impact‐induced heating and suggests that >12 km3 of organic material was excavated during the cratering process.  相似文献   

5.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

6.
7.
Abstract The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water‐rich environments provide heat and geological structures that generate and focus sub‐seafloor convective hydrothermal systems. Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact‐induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m‐thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax‐1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites. The least‐altered silicate melt composition intersected in Yax‐1 is that of a calc‐alkaline basaltic andesite with 53.4–56 wt% SiO2(volatile‐free). The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg‐saponite, K‐montmorillonite, celadonite, K‐feldspar, albite, Fe‐oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite‐K‐feldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0–150°C) oxidation and fixation of alkalis due to the interaction of glass‐rich suevite with down‐welling seawater in the outer annular trough intersected at Yax‐1. The alteration represents a cold, Mg‐K‐rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax‐1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impact‐generated hydrothermal convective system.  相似文献   

8.
Abstract— The possibility of ocean water invasion into the Chicxulub crater following the impact at the Cretaceous/Tertiary boundary was investigated based on examination of an impactite between approximately 794.63 and 894.94 m in the Yaxcopoil‐1 (Yax‐1) core. The presence of cross lamination in the uppermost part of the impactite suggests the influence of an ocean current at least during the sedimentation of this interval. Abundant occurrence of nannofossils of late Campanian to early Maastrichtian age in the matrices of samples from the upper part of the impactite suggests that the carbonate sediments deposited on the inner rim margin and outside the crater were eroded and transported into the crater most likely by ocean water that invaded the crater after its formation. The maximum grain size of limestone lithics and vesicular melt fragments, and grain and bulk chemical compositions show a cyclic variation in the upper part of the impactite. The upward fining grain size and the absence of erosional contact at the base of each cycle suggest that the sediments were derived from resuspension of units elsewhere in the crater, most likely by high energy currents association with ocean water invasion.  相似文献   

9.
Abstract— The suevite breccia of the Chicxulub impact crater, Yucatàn, Mexico, is more variable and complex in terms of composition and stratigraphy than suevites observed at other craters. Detailed studies (microscope, electron microprobe, SEM, XRF) have been carried out on a noncontinuous set of samples from the drill hole Yucatàn 6 (Y6) located 50 km SW from the center of the impact structure. Three subunits can be distinguished in the suevite: the upper unit is a fine‐grained carbonate‐rich suevite breccia with few shocked basement clasts, mostly altered melt fragments, and formerly melted carbonate material; the middle suevite is a coarse‐grained suevite with shocked basement clasts and altered silicate melt fragments; the lower suevite unit is composed of shocked basement and melt fragments and large evaporite clasts. The matrix of the suevite is not clastic but recrystallized and composed mainly of feldspar and pyroxene. The composition of the upper members of the suevite is dominated by the sedimentary cover of the Yucatàn target rock. With depth in well Y6, the amount of carbonate decreases and the proportion of evaporite and silicate basement rocks increases significantly. Even at the thin section scale, melt phases of different chemistry can be identified, showing that no widespread homogenization of the melt took place. The melt compositions also reflect the heterogeneity of the deep Yucatàn basement. Calcite with characteristic feathery texture indicates the existence of formerly pure carbonate melt. The proportion of carbonate to evaporite clasts is less than 5:1, except in the lower suevite where large evaporite clasts are present. This proportion constrains the amount of CO2 and SOX released by the impact event.  相似文献   

10.
Abstract The possibility of ocean water invasion into the Chicxulub crater following the impact at the Cretaceous/Tertiary boundary was investigated based on examination of an impactite between approximately 794.63 and 894.94 m in the Yaxcopoil‐1 (Yax‐1) core. The presence of cross lamination in the uppermost part of the impactite suggests the influence of an ocean current at least during the sedimentation of this interval. Abundant occurrence of nannofossils of late Campanian to early Maastrichtian age in the matrices of samples from the upper part of the impactite suggests that the carbonate sediments deposited on the inner rim margin and outside the crater were eroded and transported into the crater most likely by ocean water that invaded the crater after its formation. The maximum grain size of limestone lithics and vesicular melt fragments, and grain and bulk chemical compositions show a cyclic variation in the upper part of the impactite. The upward fining grain size and the absence of erosional contact at the base of each cycle suggest that the sediments were derived from resuspension of units elsewhere in the crater, most likely by high energy currents association with ocean water invasion.  相似文献   

11.
Abstract The Chicxulub crater in Mexico is a nearly pristine example of a large impact crater. Its slow burial has left the central impact basin intact, within which there is an apparently uneroded topographic peak ring. Its burial, however, means that we must rely on drill holes and geophysical data to interpret the crater form. Interpretations of crater structures using geophysical data are often guided by numerical modeling and observations at other large terrestrial craters. However, such endeavors are hindered by uncertainties in current numerical models and the lack of any obvious progressive change in structure with increasing crater size. For this reason, proposed structural models across Chicxulub remain divergent, particularly within the central crater region, where the deepest well is only ?1.6 km deep. The shape and precise location of the stratigraphic uplift are disputed. The spatial extent and distribution of the allogenic impact breccias and melt rocks remain unknown, as do the lithological nature of the peak ring and the mechanism for its formation. The objective of our research is to provide a well‐constrained 3D structural and lithological model across the central region of the Chicxulub crater that is consistent with combined geophysical data sets and drill core samples. With this in mind, we present initial physical property measurements made on 18 core samples from the Yaxcopoil‐1 (Yax‐1) drill hole between 400 and 1500 m deep and present a new density model that is in agreement with both the 3D velocity and gravity data. Future collation of petrophysical and geochemical data from Yax‐1 core, as well as further seismic surveys and drilling, will allow us to calibrate our geophysical models—assigning a suite of physical properties to each lithology. An accurate 3D model of Chicxulub is critical to our understanding of large craters and to the constraining of the environmental effects of this impact.  相似文献   

12.
Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T > 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.  相似文献   

13.
Abstract— The impact breccias encountered in drill hole Yaxcopoil‐1 (Yax‐1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine‐grained top (unit 3; 23 m thick; nuée ardente) and a coarse breccia (unit 4; ~15 m thick) below. As such, they consist of a mélange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (~24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic‐matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super‐heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax‐1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the K/T impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.  相似文献   

14.
15.
Abstract Petrographical and chemical analysis of melt particles and alteration minerals of the about 100 m‐thick suevitic sequence at the Chicxulub Yax‐1 drill core was performed. The aim of this study is to determine the composition of the impact melt, the variation between different types of melt particles, and the effects of post‐impact hydrothermal alteration. We demonstrate that the compositional variation between melt particles of the suevitic rocks is the result of both incomplete homogenization of the target lithologies during impact and subsequent post‐impact hydrothermal alteration. Most melt particles are andesitic in composition. Clinopyroxene‐rich melt particles possess lower SiO2 and higher CaO contents. These are interpreted by mixing of melts from the silicate basement with overlying carbonate rocks. Multi‐stage post‐impact hydrothermal alteration involved significant mass transfer of most major elements and caused further compositional heterogeneity between melt particles. Following backwash of seawater into the crater, palagonitization of glassy melt particles likely caused depletion of SiO2, Al2O3, CaO, Na2O, and enrichment of K2O and FeOtot during an early alteration stage. Since glass is very susceptible to fluid‐rock interaction, the state of primary crystallization of the melt particles had a significant influence on the intensity of the post‐impact hydrothermal mass transfer and was more pronounced in glassy melt particles than in well‐crystallized particles. In contrast to other occurrences of Chicxulub impactites, the Yax‐1 suevitic rocks show strong potassium metasomatism with hydrothermal K‐feldspar formation and whole rock K20 enrichment, especially in the lower unit of the suevitic sequence. A late stage of hydrothermal alteration is characterized by precipitation of silica, analcime, and Na‐bearing Mg‐rich smectite, among other minerals. This indicates a general evolution from a silica‐undersaturated fluid at relatively high potassium activities at an early stage toward a silica‐oversaturated fluid at relatively high sodium activities at later stages in the course of fluid rock interaction.  相似文献   

16.
Abstract Studies of large terrestrial impact craters indicate that post‐impact hydrothermal activity is a likely consequence of the crustal deformation and heating induced by such events. In the case of the Chicxulub basin, where marine conditions were re‐established soon after the impact, significant fluxing of seawater through the crust and hydrothermal venting into the water column might be anticipated. We have carried out geochemical analyses of Tertiary carbonate sediments within the Yaxcopoil‐1 (Yax‐1) drill hole to test for evidence of such post‐impact hydrothermal circulation. Hydrothermal activity is most likely to be found close to thick layers of melt rock inside the collapsed transient cavity, and it is estimated that Yax‐1 is located ?20 km outside this cavity. Consequently, the most likely signature of hydrothermal venting into the water column would be geochemical anomalies attributable to fallout of suspended particulate matter from a submarine hydrothermal plume. Samples of Tertiary biomicrites from depths of 794.01 to 777.02 m have high concentrations of manganese, iron, phosphorous, titanium, and aluminium and low iron/manganese ratios relative to samples from higher in the stratigraphic succession. This geochemical anomaly decreases fairly systematically between 793.13 m and 777.02 m, above which an abrupt change in geochemistry is observed. A mass balance calculation suggests that the anomaly is unlikely to be the result of a decreasing detrital input to the carbonate sediments and the nature of the element enrichments is consistent with expectations for fallout from a distal hydrothermal plume. We conclude that a post‐impact hydrothermal system did develop at Chicxulub, which led to the expulsion of hydrothermal fluids into the Tertiary water column. Preliminary biostratigraphic and magnetostratigraphic dating on Yax‐1 core suggest that this hydrothermal activity lasted for at least 300 ka.  相似文献   

17.
Abstract— This study presents results of platinum group element (PGE) analyses of impactites from the Yaxcopoil‐1 (Yax‐1) and Yucatán 6 drill cores of the 180 km‐diameter Chicxulub crater. These are the main elements used for projectile identification. They were determined by nickel sulfide fire assay combined with inductively coupled plasma mass spectrometry. The concentration of PGE in the samples are low. The concentration patterns of the suevite samples resemble the pattern of the continental crust. We conclude that any meteoritic fraction in these samples is below 0.05%. A syn‐ and post‐impact modification of the PGE pattern from meteoritic toward a continental crust pattern is very unlikely. The globally distributed fallout at the Cretaceous‐Tertiary (K/T) boundary, however, has high PGE concentrations. Therefore, the lack of a significant meteoritic PGE signature in the crater is not an argument for a PGE‐poor impactor. Taking the results of three‐dimensional numerical simulations of the Chicxulub event into account, the following conclusions are drawn: 1) The main fraction of the impactor was ejected into and beyond the stratosphere, distributed globally, and deposited in the K/T boundary clay; and 2) the low amount of projectile contamination in the Yax‐1 lithologies may reflect an oblique impact. However, the role of volatiles in the mixing process between projectile and target is not well‐understood and may also have played a fundamental role.  相似文献   

18.
We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil‐1 (Yax‐1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax‐1 and of the impact structure as a whole is derived. The lower part of Yax‐1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite‐type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact‐induced units of Yax‐1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous “megablocks;” 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall‐back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall‐back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak‐ring impact basin that is at the transition to a multi‐ring basin.  相似文献   

19.
Abstract— The ICDP Yaxcopoil‐1 (Yax‐1) borehole located 60 km south‐southwest of the center of the Chicxulub impact structure intercepted an interval of allogenic impactites (depth of 795–895 m). Petrographic analysis of these impactites allows them to be differentiated into five units based on their textural and modal variations. Unit 1 (795–922 m) comprises an apparently reworked, poorly sorted and graded, fine‐grained, clast‐supported, melt fragment‐bearing suevitic breccia. The interstitial material, similar to units 2 and 3, is permeated by numerous carbonate veinlets. Units 2 (823–846 m) and 3 (846–861 m) are groundmass‐supported breccias that comprise green to variegated angular and fluidal melt particles. The groundmass of units 2 and 3 comprises predominantly fine‐grained calcite, altered alkali element‐, Ca‐, and Si‐rich cement, as well as occasional lithic fragments. Unit 4 (861–885 m) represents a massive, variably devitrified, and brecciated impact melt rock. The lowermost unit, unit 5 (885–895 m), comprises highly variable proportions of melt rock particles (MRP) and lithic fragments in a fine‐grained, carbonate‐dominated groundmass. This groundmass could represent either a secondary hydrothermal phase or a carbonate melt phase, or both. Units 1 and 5 contain well‐preserved foraminifera fossils and a significantly higher proportion of carbonate clasts than the other units. All units show diagnostic shock deformation features in quartz and feldspar clasts. Our observations reveal that most felsic and all mafic MRP are altered. They register extensive K‐metasomatism. In terms of emplacement, we suggest that units 1 to 3 represent fallout suevite from a collapsing impact plume, whereby unit 1 was subsequently reworked by resurging water. Unit 4 represents a coherent impact melt body, the formation of which involved a significant proportion of crystalline basement. Unit 5 is believed to represent an initial ejecta/ground‐surge deposit.  相似文献   

20.
Abstract— Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil‐1 (Yax‐1) borehole between about 800 m and 896 m are presented. The Yax‐1 breccia sequence occurs from 794.63 m to 894.94 m and consists of redeposited melt‐rich, clast‐size sorted, fine‐grained suevites; melt‐rich, no clast‐size sorting, medium‐grained suevites; coarse suevitic melt agglomerates; coarse melt‐rich heterogeneous suevites; brecciated suevites; and coarse carbonate and silicate melt suevites. The low‐field susceptibility ranges from ?0.3 to 4018 times 10?6 SI, and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide ranges and are positively correlated, pointing to varying magnetic mineral contents and textures of the melt‐rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号