首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We generate mock galaxy catalogues for a grid of different cosmologies, using rescaled N -body simulations in tandem with a semi-analytic model run using consistent parameters. Because we predict the galaxy bias, rather than fitting it as a nuisance parameter, we obtain an almost pure constraint on σ8 by comparing the projected two-point correlation function we obtain to that from the Sloan Digital Sky Survey (SDSS). A systematic error arises because different semi-analytic modelling assumptions allow us to fit the r -band luminosity function equally well. Combining our estimate of the error from this source with the statistical error, we find  σ8= 0.97 ± 0.06  . We obtain consistent results if we use galaxy samples with a different magnitude threshold, or if we select galaxies by b J-band rather than r -band luminosity and compare to data from the 2dF Galaxy Redshift Survey (2dFGRS). Our estimate for σ8 is higher than that obtained for other analyses of galaxy data alone, and we attempt to find the source of this difference. We note that in any case, galaxy clustering data provide a very stringent constraint on galaxy formation models.  相似文献   

2.
The Millennium Galaxy Catalogue (MGC) is a 37.5 deg2, medium-deep, B -band imaging survey along the celestial equator, taken with the Wide Field Camera on the Isaac Newton Telescope. The survey region is contained within the regions of both the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey Early Data Release (SDSS-EDR). The survey has a uniform isophotal detection limit of 26 mag arcsec−2 and it provides a robust, well-defined catalogue of stars and galaxies in the range  16 ≤ B MGC < 24 mag  .
Here we describe the survey strategy, the photometric and astrometric calibration, source detection and analysis, and present the galaxy number counts that connect the bright and faint galaxy populations within a single survey. We argue that these counts represent the state of the art and use them to constrain the normalizations (φ*) of a number of recent estimates of the local galaxy luminosity function. We find that the 2dFGRS, SDSS Commissioning Data (CD), ESO Slice Project, Century Survey, Durham/UKST, Mt Stromlo/APM, SSRS2 and NOG luminosity functions require a revision of their published φ* values by factors of  1.05 ± 0.05, 0.76 ± 0.10, 1.02 ± 0.22, 1.02 ± 0.16, 1.16 ± 0.28, 1.75 ± 0.37, 1.40 ± 0.26  and  1.01 ± 0.39  , respectively. After renormalizing the galaxy luminosity functions we find a mean local b J luminosity density of     . 1  相似文献   

3.
4.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

5.
We present and analyse the kinematics and orbits for a sample of 488 open clusters (OCs) in the Galaxy. The velocity ellipsoid for our present sample is derived as  (σ U , σ V , σ W ) = (28.7, 15.8, 11.0) km s−1  which represents a young thin-disc population. We also confirm that the velocity dispersions increase with the age of a cluster subsample. The orbits of OCs are calculated with three Galactic gravitational potential models. The errors of orbital parameters are also calculated considering the intrinsic variation of the orbital parameters and the effects of observational uncertainties. The observational uncertainties dominate the errors of derived orbital parameters. The vertical motions of clusters calculated using different Galactic disc models are rather different. The observed radial metallicity gradient of clusters is derived with a slope of   b =−0.070 ± 0.011   dex kpc−1. The radial metallicity gradient of clusters based on their apogalactic distances is also derived with a slope of   b =−0.082 ± 0.014   dex kpc−1. The distribution of derived orbital eccentricities for OCs is very similar to that derived for the field population of dwarfs and giants in the thin disc.  相似文献   

6.
We perform a series of comparisons between distance-independent photometric and spectroscopic properties used in the surface brightness fluctuation (SBF) and fundamental plane (FP) methods of early-type galaxy distance estimation. The data are taken from two recent surveys: the SBF Survey of Galaxy Distances and the Streaming Motions of Abell Clusters (SMAC) FP survey. We derive a relation between     colour and Mg2 index using nearly 200 galaxies and discuss implications for Galactic extinction estimates and early-type galaxy stellar populations. We find that the reddenings from Schlegel et al. for galaxies with     appear to be overestimated by     per cent, but we do not find significant evidence for large-scale dipole errors in the extinction map. In comparison with stellar population models having solar elemental abundance ratios, the galaxies in our sample are generally too blue at a given Mg2; we ascribe this to the well-known enhancement of the α -elements in luminous early-type galaxies. We confirm a tight relation between stellar velocity dispersion σ and the SBF 'fluctuation count' parameter N¯ , which is a luminosity-weighted measure of the total number of stars in a galaxy. The correlation between N¯ and σ is even tighter than that between Mg2 and σ . Finally, we derive FP photometric parameters for 280 galaxies from the SBF survey data set. Comparisons with external sources allow us to estimate the errors on these parameters and derive the correction necessary to bring them on to the SMAC system. The data are used in a forthcoming paper, which compares the distances derived from the FP and SBF methods.  相似文献   

7.
8.
We produce mock angular catalogues from simulations with different initial power spectra to test methods that recover measures of clustering in three dimensions, such as the power spectrum, variance and higher order cumulants. We find that the statistical properties derived from the angular mock catalogues are in good agreement with the intrinsic clustering in the simulations. In particular, we concentrate on the detailed predictions for the shape of the power spectrum, P ( k ). We find that there is good evidence for a break in the galaxy P ( k ) at scales in the range 0.02< k <0.06 h Mpc−1, using an inversion technique applied to the angular correlation function measured from the APM Galaxy Survey. For variants on the standard cold dark matter (CDM) model, a fit at the location of the break implies Ω h =0.45±0.10, where Ω is the ratio of the total matter density to the critical density, and Hubble's constant is parametrized as H 0=100 h km s−1 Mpc−1. On slightly smaller, though still quasi-linear scales, there is a feature in the APM power spectrum where the local slope changes appreciably, with the best match to CDM models obtained for Ω h ≃0.2. Hence the location and narrowness of the break in the APM power spectrum combined with the rapid change in its slope on quasi-linear scales cannot be matched by any variant of CDM, including models that have a non-zero cosmological constant or a tilt to the slope of the primordial P ( k ). These results are independent of the overall normalization of the CDM models or any simple bias that exists betwen the galaxy and mass distributions.  相似文献   

9.
We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray-selected clusters from the Local Cluster Substructure Survey, with a median redshift of   z = 0.23  . We find a clear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at  0.04 r 500(α  ), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected Hα and radio emission, and the X-ray/BCG offset, with the line-emitting galaxies all residing in clusters with X-ray/BCG offsets of ≤15 kpc. Of the BCGs with  α < −0.85  and an offset <0.02 r 500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction ( f gas) within r 500 and find a significant correlation with X-ray/BCG projected offset. The mean f gas of the 'small offset' clusters (<0.02 r 500) is  0.106 ± 0.005 (σ= 0.03  ) compared to  0.145 ± 0.009 (σ= 0.04  ) for those with an offset >0.02 r 500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium.  相似文献   

10.
The real-space power spectrum of L * galaxies measured from the 2dF Galaxy Redshift Survey (2dFGRS) is presented. Markov chain Monte Carlo (MCMC) sampling was used to fit radial and angular modes resulting from a spherical harmonics decomposition of the 2dFGRS overdensity field (described in a previous paper) with 16 real-space power spectrum values and linear redshift-space distortion parameter  β( L *, 0)  . The recovered marginalized band powers are compared to previous estimates of galaxy power spectra. Additionally, we provide a simple model for the 17-dimensional likelihood hypersurface in order to allow the likelihood to be quickly estimated given a set of model band powers and β( L *, 0). The likelihood surface is not well approximated by a multivariate Gaussian distribution with model-independent covariances. Instead, a model is presented in which the distribution of each band power has a Gaussian distribution in a combination of the band power and its logarithm. The relative contribution of each component was determined by fitting the MCMC output. Using these distributions, we demonstrate how the likelihood of a given cosmological model can be quickly and accurately estimated, and we use a simple set of models to compare estimated likelihoods with likelihoods calculated using the full spherical harmonics procedure. All of the data are made publicly available (from http://www.roe.ac.uk/~wjp/ ), enabling the spherical harmonics decomposition of the 2dFGRS of Percival et al. to be easily used as a cosmological constraint.  相似文献   

11.
The number density of rich galaxy clusters still provides the most robust way of normalizing the power spectrum of dark matter perturbations on scales relevant to large-scale structure. We revisit this constraint in the light of several recent developments: (1) the availability of well-defined samples of local clusters with relatively accurate X-ray temperatures; (2) new theoretical mass functions for dark matter haloes, which provide a good fit to large numerical simulations; (3) more accurate mass–temperature relations from larger catalogues of hydrodynamical simulations; (4) the requirement to consider closed as well as open and flat cosmologies to obtain full multiparameter likelihood constraints for CMB and SNe studies. We present a new sample of clusters drawn from the literature and use this sample to obtain improved results on σ 8, the normalization of the matter power spectrum on scales of 8  h −1 Mpc, as a function of the matter density and cosmological constant in a universe with general curvature. We discuss our differences with previous work, and the remaining major sources of uncertainty. Final results on the normalization, approximately independent of power spectrum shape, can be expressed as constraints on σ at an appropriate cluster normalization scale R Cl. We provide fitting formulas for R Cl and σ ( R Cl) for general cosmologies, as well as for σ 8 as a function of cosmology and shape parameter Γ. For flat models we find approximately σ 8≃(0.495−0.037+0.034M−0.60 for Γ=0.23, where the error bar is dominated by uncertainty in the mass–temperature relation.  相似文献   

12.
We present the results of a search for strong H α emission line galaxies (rest frame equivalent widths greater than 50 Å) in the z ≈0.23 cluster Abell 2390. The survey contains 1189 galaxies over 270 arcmin2, and is 50 per cent complete at M r ≈−17.5+5 log  h . The fraction of galaxies in which H α is detected at the 2 σ level rises from 0.0 in the central regions (excluding the cD galaxy) to 12.5±8 per cent at R 200. For 165 of the galaxies in our catalogue, we compare the H α equivalent widths with their [O  ii ] λ 3727 equivalent widths, from the Canadian Network for Observational Cosmology (CNOC1) spectra. The fraction of strong H α emission line galaxies is consistent with the fraction of strong [O  ii ] emission galaxies in the CNOC1 sample: only 2±1 per cent have no detectable [O  ii ] emission and yet significant (>2 σ ) H α equivalent widths. Dust obscuration, non-thermal ionization, and aperture effects are all likely to contribute to this non-correspondence of emission lines. We identify six spectroscopically 'secure' k+a galaxies [ W 0(O  ii )<5 Å and W 0(H δ )≳5 Å]; at least two of these show strong signs in H α of star formation in regions that are covered by the slit from which the spectra were obtained. Thus, some fraction of galaxies classified as k+a based on spectra shortward of 6000 Å are likely to be undergoing significant star formation. These results are consistent with a 'strangulation' model for cluster galaxy evolution, in which star formation in cluster galaxies is gradually decreased, and is neither enhanced nor abruptly terminated by the cluster environment.  相似文献   

13.
We present an analysis of the redshift-space power spectrum, P ( k ), of rich clusters of galaxies based on an automated cluster catalogue selected from the APM Galaxy Survey. We find that P ( k ) can be approximated by a power law, P ( k )∝ kn , with n ≈−1.6 over the wavenumber range 0.04< k <0.1 h Mpc−1. Over this range of wavenumbers, the APM cluster power spectrum has the same shape as the power spectra measured for optical and IRAS galaxies. This is consistent with a simple linear bias model in which different tracers have the same power spectrum as that of the mass distribution, but shifted in amplitude by a constant biasing factor. On larger scales, the power spectrum of APM clusters flattens and appears to turn over on a scale k ∼0.03 h Mpc−1. We compare the power spectra estimated from simulated APM cluster catalogues with those estimated directly from cubical N -body simulation volumes, and find that the APM cluster survey should give reliable estimates of the true power spectrum at wavenumbers k ≳0.02 h Mpc−1. These results suggest that the observed turnover in the power spectrum may be a real feature of the cluster distribution, and that we have detected the transition to a near-scale-invariant power spectrum implied by observations of anisotropies in the cosmic microwave background radiation. The scale of the turnover in the cluster power spectrum is in good agreement with the scale of the turnover observed in the power spectrum of APM galaxies.  相似文献   

14.
We present a survey of bright optical dropout sources in two deep, multiwavelength surveys comprising 11 widely separated fields, aimed at constraining the galaxy luminosity function at   z ≈ 7  for sources at  5–10  L * ( z = 6)  . Our combined survey area is 225 arcmin2 to a depth of   J AB= 24.2  (3σ) and 135 arcmin2 to   J = 25.3  (4σ). We find that infrared data longwards of 2 μm are essential for classifying optical dropout sources, and in particular for identifying cool Galactic star contaminants. Our limits on the number density of high-redshift sources are consistent with current estimates of the Lyman break galaxy luminosity function at   z = 6  .  相似文献   

15.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

16.
We present a new luminosity–colour relation based on trigonometric parallaxes for thin-disc main-sequence stars in Sloan Digital Sky Survey (SDSS) photometry. We matched stars from the newly reduced Hipparcos catalogue with the ones taken from Two-Micron All-Sky Survey (2MASS) All-Sky Catalogue of Point Sources, and applied a series of constraints, i.e. relative parallax errors  (σπ/π≤ 0.05)  , metallicity  (−0.30 ≤[M/H]≤ 0.20 dex)  , age  (0 ≤ t ≤ 10 Gyr)  and surface gravity  (log  g > 4)  , and obtained a sample of thin-disc main-sequence stars. Then, we used our previous transformation equations ( Bilir et al. 2008a ) between SDSS and 2MASS photometries and calibrated the   Mg   absolute magnitudes to the  ( g − r )0  and  ( r − i )0  colours. The transformation formulae between 2MASS and SDSS photometries along with the absolute magnitude calibration provide space densities for bright stars which saturate the SDSS magnitudes.  相似文献   

17.
We test an analytic model for the two-point correlations of galaxy clusters in redshift space using the Hubble volume N -body simulations. The correlation function of clusters shows no enhancement along the line of sight, owing to the lack of any virialized structures in the cluster distribution. However, the distortion of the clustering pattern arising from coherent bulk motions is clearly visible. The distribution of cluster peculiar motions is well described by a Gaussian, except in the extreme high-velocity tails. The simulations produce a small but significant number of clusters with large peculiar motions. The form of the redshift-space power spectrum is strongly influenced by errors in measured cluster redshifts in extant surveys. When these errors are taken into account, the model reproduces the power spectrum recovered from the simulation to an accuracy of 15 per cent or better over a decade in wavenumber. We compare our analytic predictions with the power spectrum measured from the APM cluster redshift survey. The cluster power spectrum constrains the amplitude of density fluctuations, as measured by the linear rms variance in spheres of radius 8  h −1 Mpc, denoted by σ 8. When combined with the constraints on σ 8 and the density parameter Ω derived from the local abundance of clusters, we find a best-fitting cold dark matter model with     and     , for a power spectrum shape that matches that measured for galaxies. However, for the best-fitting value of Ω and given the value of Hubble's constant from recent measurements, the assumed shape of the power spectrum is incompatible with the most readily motivated predictions from the cold dark matter paradigm.  相似文献   

18.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

19.
A parametrized model of the mass distribution within the Milky Way is fitted to the available observational constraints. The most important single parameter is the ratio of the scalelength R d* of the stellar disc to R 0. The disc and bulge dominate v c( R ) at R ≲ R 0 only for R d,*/ R 0≲0.3. Since the only knowledge we have of the halo derives from studies like the present one, we allow it to contribute to the density at all radii. When allowed this freedom, however, the halo causes changes in assumptions relating to R  ≪  R 0 to affect profoundly the structure of the best-fitting model at R  ≫  R 0. For example, changing the disc slightly from an exponential surface-density profile significantly changes the form of v c( R ) at R  ≫  R 0, where the disc makes a negligible contribution to v c. Moreover, minor changes in the constraints can cause the halo to develop a deep hole at its centre that is not physically plausible. These problems call into question the proposition that flat rotation curves arise because galaxies have physically distinct haloes rather than outwards-increasing mass-to-light ratios.   The mass distribution of the Galaxy and the relative importance of its various components will remain very uncertain until more observational data can be used to constrain mass models. Data that constrain the Galactic force field at z ≳ R and at R  >  R 0 are especially important.  相似文献   

20.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号