首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Microstructural analysis of glacial deposits has recently been used as a research tool to determine sediment genesis. However, the occurrence of microstructures in deposits of known origin has not been sufficiently documented, hindering our ability to confidently interpret microstructures in sediments of unknown origin. Our objective is to present a calibration study of microstructures of recent sediment flow deposits and associated sediments from the Matanuska Glacier, Alaska, and to evaluate the degree of commonality with microstructures found in subglacially deformed sediments. Microstructures in sediment flow deposits can be formed as a result of sediment transport, deposition, and/or post-depositional processes, and are related to the viscosity regime of the source flow. Characteristic microstructures formed during brittle deformation include shears, faults, and brecciation; microstructures formed during ductile deformation include folds, pressure shadows, re-orientation of clasts around a 'core' stone, fine laminations, basal shear zones, imbrication, and flow fabrics. Other microstructures include fluid escape and injection structures, clast haloes, and fissility. The results of our comparison suggest that sediment flow deposits share many microstructures in common with subglacially deformed sediments.  相似文献   

3.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

4.
A section, almost 20 km long and up to 80 m high, through alternating layers of diamict and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian-Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.  相似文献   

5.
The nature and origin of glacial sediments at Wylfa Head are described, and their significance with regard to sedimentary environments during Late Devensian deglaciation of the Irish Sea Basin is discussed. Recent models of deglaciation under glaciomarine conditions are challenged. The Quaternary sequence at Wylfa consists of eroded and glaciotectonically deformed bedrock, locally derived lodgement till, calcareous silt-rich lodgement till containing northern erratics, discontinuous units of orange-brown silty sand of possible aeolian origin, and grey laminated freshwater silts filling a small kettle hole. The till units thicken to the south where the surface is drumlinised. It is concluded that the landforms and deposits result from a warm-based Irish Sea glacier, which moved towards the southwest. Spatial variation in basal water pressure resulted from localised drainage through zones of more heavily jointed bedrock. Rapid glacial erosion occurred in areas where subglacial water pressure was relatively high, while deposition of the resulting basal sediment took place where water pressures were reduced. The glacier also carried basal calcareous silty till onshore, which was deposited by lodgement processes. None of the deposits at Wylfa are interpreted as glaciomarine in origin, and there is no evidence at this site for an isostatically induced marine transgression prior to deglaciation.  相似文献   

6.
Studies on the genesis of subaerial debris flows and associated deposits are relatively rare in the literature, especially in an ice-marginal context of moraine formation. The present contribution reports results from both the macro- and micro-scales of a subaerial depositional setting in order to contribute to closing this gap. At the macroscale, alternating loose, stratified, clast- and matrix-supported diamicts and finely laminated sand units indicate deposition of debris flows and fluvial units in a subaerial, ice-marginal setting that were stacked up to form a terrestrial ice-contact fan. Macroscale and micromorphological analyses show that this fan displays evidence of a three-phased formation: (a) overriding and glaciotectonisation of pre-existing sediments followed by retreat and burial of this core by (b) ice-contact fan deposition dominated by water-rich fluvial deposition with relatively little debris flow activity and (c) a switch to a gravitational sedimentation style with dominantly debris flow deposition and fewer and thinner fluvial units. Thin sections of both the diamict and laminated sand units show evidence of deposition of a mud and fine sand-rich slurry being expelled from the tops of advancing mass flows. Water-rich fine-grained slurries appear to have been progressively overridden and deformed in response to ductile shear occurring at the base of individual flows. Liquefaction and remobilisation of sand within laminated deposits occurred during such basal shear events, resulting in the injection of liquefied sediments into variably deformed laminated sands and clays. Deformation is more likely to have taken place through internal movement of the sediment due to changing porewater conditions and loading upon emplacement. Our approach confirms previous results that highlight the possibilities of increasing the accuracy of sedimentological investigations through combined sedimentological analyses at varying scales.  相似文献   

7.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The deformed metasedimentary bedrock and overlying diamictons in western Anglesey, NW Wales, record evidence of glacier-permafrost interactions during the Late Devensian (Weichselian). The locally highly brecciated New Harbour Group bedrock is directly overlain by a bedrock-rich diamicton which preserves evidence of having undergone both periglacial (brecciation, hydrofracturing) and glacitectonic deformation (thrusting, folding), and is therefore interpreted as periglacial head deposit. The diamicton locally posses a well-developed clast macrofabric which preserves the orientation of the pre-existing tectonic structures within underlying metasedimentary rocks. Both the diamicton and New Harbour Group were variably reworked during the deposition of the later Irish Sea diamicton, resulting in the detachment of bedrock rafts and formation of a pervasively deformed glacitectonite. These structural and stratigraphic relationships are used to demonstrate that a potentially extensive layer of permafrost developed across the island before it was overridden by the Irish Sea Ice Stream. These findings have important implications for the glacial history of Anglesey, indicating that the island remained relatively ice-free prior to its inundation by ice flowing southwards down the Irish Sea Basin. Palynological data obtained from the diamictons across Anglesey clearly demonstrates that they have an Irish Sea provenance. Importantly no Lower Palaeozoic palynomorphs were identified, indicating that it is unlikely that Anglesey was overridden by ice emanating from the Snowdon ice cap developed on the adjacent Welsh mainland. Permafrost was once again re-established across Anglesey after the Irish Sea Ice Stream had retreated, resulting in the formation of involutions which deform both the lower bedrock-rich and overlying Irish Sea diamictons.  相似文献   

9.
High-resolution seismic and bathymetric data offshore southeast Ireland and LIDaR data in County Waterford are presented that partially overlap previous studies. The observed Quaternary stratigraphic succession offshore southeast Ireland (between Dungarvan and Kilmore Quay) records a sequence of depositional and erosional events that supports regional glacial models derived from nearby coastal sediment stratigraphies and landforms. A regionally widespread, acoustically massive facies interpreted as the ‘Irish Sea Till’ infills an uneven, channelized bedrock surface overlying irregular mounds and deposits in bedrock lows that are probably earlier Pleistocene diamicts. The till is truncated and overlain by a thin, stratified facies, suggesting the development of a regional palaeolake following ice recession of the Irish Sea Ice Stream. A north–south oriented seabed ridge to the north is interpreted as an esker, representing southward flowing subglacial drainage associated with a restricted ice sheet advance of the Irish Ice Sheet onto the Celtic Sea shelf. Onshore topographic data reveal streamlined bedforms that corroborate a southerly advance of ice onto the shelf across County Waterford. The combined evidence supports previous palaeoglaciological models. Significantly, for the first time, this study defines a southern limit for a Late Midlandian Irish Ice Sheet advance onto the Celtic Sea shelf. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The upper cliff of the Santa Cruz River was used to assess the proglacial environments of the Argentino Glacier outlet of Late Pleistocene age. These cliffs show glaciolacustrine, fluvioglacial and till deposits, where only the first one are deformed. Glacial landforms in the area and these structures suggest that the ice mass advanced, topographically controlled, towards the east from the Patagonian Ice Sheet pushing up the proglacial sediments.The spatial arrangement of thrusts and overturned folds, the drumlins-flutes moraine directions and the end moraines shape, allow inferring the dynamic and the Argentino glacier profile. Detailed analyses of the glaciotectonic structures indicate that these have two origins: load in the north with stress transfer to the southeast, and push from the west. Through the analysis of deformed sediments, their thickness and their sedimentary and structural features, three zones of deformations were recognized. Each of these zones was associated to glacial advances because of changes of the regional climate conditions.  相似文献   

12.
The Lambert Graben is occupied by the world’s largest fjord system, through which flows the Lambert Glacier, the Amery Ice Shelf and their tributaries. Along the western margin of the graben, in the northern Prince Charles Mountains, remnants of uplifted Miocene and Pliocene strata of the glacigenic fjordal Pagodroma Group total more than 800 m in thickness. These sediments provide evidence for a dynamic East Antarctic ice sheet during the Neogene Period. Each of the four Pagodroma Group formations defined from this region rests unconformably on either Proterozoic or Permo‐Triassic rocks. The unconformity surfaces represent parts of the walls and floors of Neogene fjords. For these surfaces to have been eroded, the ice must have been grounded out as far as the continental shelf in Prydz Bay. The Pagodroma Group was deposited by wet‐based glaciers discharging into a fjordal setting and includes lithofacies that are quite different from those produced by modern Antarctic ice masses. The principal lithofacies are massive diamicts and soulder gravels, deposited both close to a calving, grounded glacier terminus and from icebergs. The few stratified diamicts are the product of more distal iceberg sedimentation. An ice‐transported gravel lithofacies includes rockfall debris derived from palaeofjord walls and mixed with subglacially derived diamicts. Some lithofacies contain evidence of subaquatic slumping and gravity flowage. Volumetrically minor lithofacies include laminites, with some exposures exhibiting large ice‐rafted clasts. The laminites represent less proximal, mainly ice‐free fjordal sediments, resulting either from tidal‐current sorting of suspended sediment originating from subaquatic glaciofluvial discharge, or from turbidity currents derived from unstable subaquatically deposited glacigenic sediment. The Pagodroma Group provides a record of multiple glaciation by dynamic, sliding glaciers carrying large amounts of both basal and supraglacial debris. The closest modern analogues, in terms of the thermal and dynamic characteristics of the Neogene Lambert Glacier, appear to be the fast‐flowing tidewater glaciers of East Greenland. These glaciers originate from the interior ice sheet and discharge large volumes of icebergs; the resulting lithofacies are predominantly diamicts.  相似文献   

13.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

14.
15.
冰岩界面的冰川动力学是冰川系统的重要组成部分, 海螺沟冰川地处温暖湿润的海洋环境, 冰川运动速度较快, 冰川底部接近压融点, 是研究冰下过程的较理想地点. 在海螺沟冰川大型磨光面上浅显侵蚀坑内发现了碎屑物质. 对碎屑物质理化特征研究表明: 粒度特征、地球化学与石英砂SEM 分析表明沉积在冰岩界面上的物质来自于冰川底部的底碛层, 而不是冰上环境的产物. 偏光显微镜下观察到的冰下沉积物呈现出一系列塑性变形(微旋转、褶皱)和脆性变形(线性结构、支撑结构、断层)微观结构和构造. 两种变形结构的存在是碎屑物质在形成过程中其含水量波动情况的反映. 冰下碎屑物质是冰下融出、滞碛作用的共同产物. 在整个冰下碎屑物质形成与变形过程中, 由于冰下水系季节性变化带来的冰岩界面上冰川融水含量的波动起了决定性作用.  相似文献   

16.
17.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

18.
《Quaternary Science Reviews》2007,26(5-6):743-758
Detailed examination of the Tekapo Formation in the Tasman Valley, New Zealand has identified 20 facies, and five facies associations. These associations are delta foresets and bottomsets, sediment density flows, ice-contact lake sediments with ice-rafted debris and resedimentation deposits, and outwash gravels. Interpretation of the sediment-landform associations informed by observations at modern glacier termini suggests that the Late Pleistocene Tekapo Formation moraines have been formed by downwasting of a more expanded Tasman Glacier. During the early stages of glacier retreat, ponds on the glacier surface develop into thermokarst lakes which enlarge and coalesce to form a large supraglacial lake. Continued downwasting causes the lake outlet river to entrench into the impounding latero-frontal ice-cored moraine, lowering the lake level. This exposes lake-bottom sediments and forms shorelines on the proximal slopes of the ice-cored moraine. As the ice-cored moraine melts, these lake sediments are deformed and deposited against the Mt. John moraine. The observations and interpretations reported here suggest the Late Pleistocene end moraine is a constructional feature not a structural (glaciotectonic) feature as suggested by previous studies.  相似文献   

19.
This paper presents the results of a detailed study of a complex hydrofracture system and host diamictons exposed within a longitudinal section through an elongate drumlin located to the west of Cemlyn Bay, Anglesey, NW Wales. This complex, laterally extensive sand, silt and clay filled hydrofracture system was active over a prolonged period and is thought to have developed beneath the Late Devensian (Weichselian) Irish Sea Ice Stream as it overrode this part of NW Anglesey. The sediment-fill to the hydrofracture system is deformed with kinematic indicators (folds, thrusts, augen) recording a SW-directed sense of shear, consistent with the regional ice flow direction across this part of the island. The lack of any geomorphological evidence for active retreat of the Irish Sea ice across Anglesey has led to the conclusion that hydrofracturing at the Cemlyn Bay site occurred within the bed of the Irish Sea Ice Stream whilst this relatively faster flowing corridor of ice was actively overriding the island. Shear imposed by the overriding ice led to the development of a subglacial shear zone which facilitated the propagation of the hydrofracture system with the laterally extensive feeder sills occurring parallel to Y-type Riedel shears. Although a subglacial setting beneath the active Irish Sea Ice Stream can be argued for the Cemlyn Bay hydrofracture system, its relationship to the formation of the ‘host’ drumlin remains uncertain. However, evidence presented here suggests that hydrofracturing may have occurred during the later stages or post landform development in response to the migration of overpressurised meltwater within the bed of the Irish Sea ice; possibly accompanying the local thinning and shutdown of the Irish Sea Ice Stream on Anglesey.  相似文献   

20.
Many bedrock-confined fjord valleys along the Norwegian coast contain thick accumulations of fine-grained sediments that were deposited during and after the last deglaciation. The deposits gradually emerged above sea level due to glacioisostatic uplift, and fjord marine sedimentation was gradually followed by shallow marine and fluvial processes. During emergence terraces and river-cut slopes were formed in the valleys. Subsequent leaching of salt ions from the pore water in the marine deposits by groundwater has led to the development of quick clay. The deposits are subject to river erosion and destructive landslides involving quick clay. Most slides are of prehistoric age. Others are known from modern observations as well as from historic records.Landforms such as distinct slide scars or the hummocky terrain of slide deposits may be strongly modified by secondary processes. In addition, deposits from the most liquid part of quick clay slides may have planar surfaces. Clay-slide deposits on a fluvial or deltaic terrace, therefore, are not always easily recognized from morphology, and only exposures may reveal their internal structures and allow them to be distinguished from overbank flood sediments. Detailed sedimentological work shows that slide deposits in such setting consist of distinct facies containing reworked marine sediments. We propose three facies successions of clay-slide deposits that form a continuum. The dominant components of these succession types are: slightly deformed blocks of laminated clay and silt (A), highly deformed clay and silt with gravel clasts (B) and massive to stratified clay and silt with scattered clasts (C). We suggest that in many cases a basal muddy diamicton is a characteristic, and possibly diagnostic feature. Processes and depositional models are interpreted from the different succession types. The results may be relevant for identifying clay-slide deposits elsewhere and may be useful during general mapping of fjord marine deposits and characterization of slide-prone areas as well as during identification of prehistoric slides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号