首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

2.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

3.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

4.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

5.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

6.
In the Boi Massif of Western Timor the Mutis Complex, which is equivalent to the Lolotoi Complex of East Timor, is composed of two lithostratigraphical components: various basement schists and gneisses; and the dismembered remnants of an ophiolite. Cordierite-bearing pelitic schists and gneisses carry an early mineral assemblage of biotite + garnet + plagioclase + Al-silicate, but contain no prograde muscovite; sillimanite occurs in a textural mode which suggests that it replaced and pseudomorphed kyanite at an early stage and some specimens of pelitic schist contain tiny kyanite relics in plagioclase. Textural relations between, and mineral chemistries of, ferro-magnesian phases in these pelitic chists and gneisses suggest that two discontinuous reactions and additional continuous compositional changes have been overstepped, possibly with concomitant anatexis, as a result of decrease in Pload during high temperature metamorphism. The simplified reactions are: garnet and/or biotite + sillimanite + quartz + cordierite + hercynite + ilmenite + excess components. P-T conditions during the development of the early mineral assemblage in the pelitic gneisses are estimated to have been P + 10 kbar and T > 750°C, based upon the plagioclase-garnet-Al-silicate-quartz geobarometer and the garnet-biotite geothermometer. P-T conditions during the subsequent development of cordierite-bearing mineral assemblages in the pelitic gneisses are estimated to have been P + 5 kbar and T + 700°C with XH2O < 0.5, based upon the Fe content of cordierite occurring in the assemblage quartz + plagioclase + sillimanite + biotite + garnet + cordierite coexisting with melt. Final equilibration between some of the phases suggests that conditions dropped to P > 2.3 kbar and T > 600°C. A similar exhumation P-T path is suggested for the pelitic schists with early metamorphic conditions of P > 6.2 kbar and T > 745°C and subsequent development of cordierite under conditions in the range P = 3-4 kbar and T = 600-700°C. The tectonic implications of these P-T estimates are discussed and it is concluded that the P-T path followed by these rocks was caused by decompression during rifting and synmetamorphic ophiolite emplacement resulting from processes during the initiation and development of a convergent plate junction located in Southeast Asia during late Jurassic to Cretaceous time.  相似文献   

7.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

8.
Silica-deficient sapphirine-bearing rocks occur as an enclave within granulite facies Proterozoic gneisses and migmatites near Grimstad in the Bamble sector of south-east Norway (Hasleholmen locality). The rocks contain peraluminous sapphirine, orthopyroxene, gedrite, anthophyllite, sillimanite, sapphirine, corundum, cordierite, spinel, quartz and biotite in a variety of assemblages. Feldspar is absent.
Fe2+/(Fe2++ Mg) in the analysed minerals varies in the order: spinel > gedrite ≥ anthophyllite ≥ biotite > sapphirine>orthopyroxene > cordierite.
Characteristic pseudomorph textures indicate coexistence of orthopyroxene and sillimanite during early stages of the reaction history. Assemblages containing orthopyroxene-sillimanite-sapphirine-cordierite-corundum developed during a high-pressure phase of metamorphism and are consistent with equilibration pressures of about 9 kbar at temperatures of 750–800°C. Decompression towards medium-pressure granulite facies generated various sapphirine-bearing assemblages. The diagnostic assemblage of this stage is sapphirine-cordierite. Sapphirine occurs in characteristic symplectite textures. The major mineralogical changes can be described by the discontinuous FMAS reaction: orthopyroxene + sillimanite → sapphirine + cordierite + corundum.
The disequilibrium textures found in the Hasleholmen rocks are characteristic for reactions which have been in progress but then ceased before they run to completion. Textures such as reaction rims, symplectites, partial replacement, corrosion and dissolution of earlier minerals are characteristic of granulite facies rocks. They indicate that, despite relatively high temperatures (700–800° C), equilibrium domains were small and chemical communication and transport was hampered as a result of dry or H2O-poor conditions.  相似文献   

9.
Island arcs, active and passive margins are the best tectonic settings to generate fertile reservoirs likely to be involved in subsequent granitoid genesis. In such environments, greywackes are abundant crustal rock types and thus are good candidates to generate large quantities of granitoid magmas. We performed a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt% biotite (Bt) (X Mg45), and 41 wt% quartz (Qtz). Eighty experiments, averaging 13 days each, were carried out using a powder of minerals (5m) and a glass of the same composition. The multivariant field of the complex reaction Bt+Pl+QtzGrt/Crd/Spl+ Opx+Kfs+melt limited by the Opx-in and Bt-out curves, is located between 810–860°C at 100 MPa, 800–850°C at 200 MPa, 810–860°C at 300 MPa, 820–880°C at 500 MPa, 860–930°C at 800 MPa, 890–990°C at 1000 MPa, and at a temperature lower than 1000°C at 1500 and 1700 MPa. The melting of biotite+plagioclase+ quartz produced melt+orthopyroxene (Opx) +cordierite (Crd) or spinel (Spl) at 100, 200 and 300 MPa, and melt+orthopyroxene+garnet (Grt) from 500 to 1700 MPa (+Qtz, Pl, FeTi Oxide at all pressures). K-feldspar (Kfs) was found as a product of the reaction in some cases and we observed that the residual plagioclase was always strongly enriched in orthoclase component. The P-T surface corresponding to the multivariant field of this reaction is about 50 to 100°C wide. At temperatures below the appearance of orthopyroxene, biotite is progressively replaced by garnet with increasing P. At 850°C, we observed that (1) the modal proportion of garnet increases markedly with P; (2) the grossular content of the garnet increases regularly from about 4 mol% at 500 MPa to 15 mol% at 2000 MPa. These changes can be ascribed to the reaction Bt+Pl+Qtz Grt+Kfs+melt with biotite +plagioclase+quartz on the low-P side of the reaction. As a result, at 200 MPa, we observed the progressive disappearance of biotite without production of orthopyroxene. These experiments emphasize the importance of this reaction for the understanding of partial melting processes and evolution of the lower continental crust. Ca-poor Al-metagreywackes represent fertile rocks at commonly attainable temperatures (i.e. 800–900°C), below 700 MPa. There, 30 to 60 vol.% of melt can be produced. Above this pressure, temperatures above 900°C are required, making the production of granitoid magmas more difficult. Thin layers of gneisses composed of rothopyroxene, garnet, plagioclase, and quartz (±biotite), interbedded within sillimanite-bearing paragneisses, are quite common in granulite terrains. They may result from partial melting of metagreywackes and correspond to recrystallized mixtures of crystals (+trapped melt) left behind after removal of a major proportion of melt. Available experimental constraints indicate that extensive melting of pelites takes place at a significantly lower temperature (850°C±20) than in Al-metagreywackes (950°C±30), at 1000 MPa. The common observation that biotite is no longer stable in aluminous paragneisses while it still coexists commonly with orthopyroxene, garnet, plagioclase and quartz, provides rather tight temperature constraints for granulitic metamorphism.Abbreviations Ab albite - alm almandine component in garnet - Als aluminum silicate - An anorthite - Ap apatite - Bt biotite - Cal calcite - Crd cordierite - Crn corundum - En enstatite - Fl fluid phase - Fs ferrosilite - Ged gedrite - Gl glass - Grs Grossular - grs grossular component in garnet - Grt garnet - Hc hercynite - Hem hematite - Ilm ilmenite - Kfs K-feldspar - M melt - Mag magnetite - Ms muscovite - Opx orthopyroxene - Or orthoclase - Phl phlogopite - Pl plagioclase - Po Pyrrhotite - Prp pyrope - prp pyrope component in garnet - Otz quartz - Rt rutile - Sa sanidine - Sil sillimanite - Spl spinel - St staurolite - Ti-Mag titano-magnetite - W water  相似文献   

10.
The unusual association of cordierite and cummingtonite (? gedrite+ chlorite + biotite + ilmenite + plagioclase + quartz) definesa metamorphic facies within aluminous, low-Ca amphibolites fromthe Proterozoic rocks of the Gold Brick District, east of Gunnison,Colorado. More Fe-rich bulk chemistries in the same facies arecharacterized by assemblages consisting of cordierite+-gedrite+ garnet + chlorite + biotite + ilmenite + plagioclase + quartz,whereas more Mg-rich compositions are characterized by cordierite+ anthophyllite + chlorite + biotite + ilmenite ? plagioclase+ quartz. The assemblage gedrite 4- cummingtonite + chlorite+ biotite + ilmenite + plagioclase + quartz was also observed.Coexisting cordierite+ anthophyllite + cummingtonite was notobserved in any rocks, apparently because this assemblage isstable over only a very narrow range of bulk compositions. Metamorphosedpelitic rocks are more iron rich than the assemblage cordierite+ gedrite + garnet + chlorite + biotite + ilmenite + plagioclase+ quartz and consist of garnet ?cordierite ?staurolite ? chlorite? andalusite + biotite + ilmenite + plagioclase + quartz? microclineor muscovite. Mineral rim compositions from cordierite-bearing amphibolitesand metapelites determined by electron microprobe analysis showsystematic Fe/Mg partitioning and define assemblages that occupynon-overlapping regions of the compositional system SiO2-TiO2-Al2O3-MnO-FeO-MgO-CaO-Na2O-K2O-H2Oas determined by algebraic and statistical methods developedby Braun & Stout (1975) and Fisher (1989). Graphical methods(projections) produced spurious overlaps not confirmed by themore rigorous algebraic tests. The spurious overlaps were generatedbecause standard projective analysis was not able simultaneouslyto account for the important effects of the components Na2O,CaO, and MnO on the AFM topologies. The results of algebraicand statistical analysis are consistent with an equilibriumorigin at constant values of temperature and pressure. The cordierite-cummingtonite facies encompasses the relativelylow-pressure and moderate-temperature conditions associatedwith the stability field of andalusite. Garnet-biotite geothermo-metry,and garnet, aluminosilicate, silica, plagioclase (GASP) geobarometrysuggest that temperatures and pressures were nearly constantacross the study area at 550( ? 70) ?C and 3 kb, respectively,near the peak of metamorphism. Other geothermometers and geobarometers,and independent pressure and temperature estimates, are compatiblewith garnet-biotite thermometry and GASP geo-barometry. Gradientsin fO2 or H2O are not required to explain the compatibilityof these assemblages at constant T and P. Cordierite + cummingtonite-bearingrocks can apparently be derived from anthophyllite +garnet-bearingrocks by increasing temperature or decreasing pressure.  相似文献   

11.
 Thermodynamic modelling of (1) osumilite solid solutions and (2) dehydration melting in pelitic compositions within the KFMASH system is quite successful in reproducing the invariant and univariant reactions determined in experimental studies. Even though rather preliminary, such melt thermodynamic models may be very useful in interpolating and extrapolating the limited information available from a small number of experimental runs. These methods allow the compositions of all phases to be monitored as a function of pressure, temperature and equilibrium phase assemblage for any desired bulk composition. Locating the higher variance phase fields (e.g. quadrivariant, quinivariant) is often difficult or impossible by inspection, but is made relatively easy using thermodynamic software such as thermocalc. In the KFMASH system the calculated partition of Fe and Mg between osumilite, garnet, cordierite, orthopyroxene and biotite are shown to be in good agreement with experimental and natural data and allow reliable calculation of mineral compositions coexisting with quartz-saturated and H2O-undersaturated melts for a variety of bulk compositions. These phase diagram calculations allow quite tight limits to be placed on the pressure, temperature and water activity conditions which accompanied metamorphism of natural osumilite occurrences in Nain, Namaqualand, and Rogaland. At fixed bulk composition, the initial melting of pelites by dehydration of biotite can occur via univariant, divariant or trivariant equilibria depending upon pressure of metamorphism. Of particular interest is that, for low pressures or more magnesian bulk compositions, fluid-absent melting begins by generating liquid from the high-variance assemblage biotite+cordierite+K-feldspar+ quartz. This type of modelling allows investigation, at least qualitatively, of the fine scale details of melt production as a function of changes in pressure, temperature and bulk composition. Received: 29 November 1995 / Accepted: 22 April 1996  相似文献   

12.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

13.
Textural evidence for the partial breakdown of staurolite-biotite and andalusite-biotite assemblages to cordierite-orthoamphibole implies high temperature metasomatic depletion of K2O in semi-pelitic rocks from Springton, South Australia. The origin of the reaction textures is discussed with reference to K2O-T diagrams derived from the topologically equivalent K2O–(-H2O) diagram showing both discontinuous and Fe–Mg continuous reactions. The involvement of fluids in the metasomatic process is implied by the scale of K2O removal and suggests that the outcrop pattern of cordierite-gedrite rocks reflects, at least in part, a heterogeneous distribution of advecting fluids in the metamorphic pile at high temperatures.Mineral abbreviations used in text and figures ab albite - alm almandine - als aluminosilicate - and andalusite - anth anthophyllite - bt biotite - cd cordierite - fe-bt Fe-rich biotite - fe-cd Fe-rich cordierite - fe-oa Fe-rich orthoamphibole - fe-st Fe-staurolite - gt garnet - ksp potassium feldspar - ky kyanite - mg-cd Mg-rich cordierite - mg-oa Mg-rich orthoamphibole - mg-st Mg-rich staurolite - mu muscovite - oa orthoamphibole - phl phlogopite - plag plagioclase - py pyrope - sill sillimanite - st staurolite - v vapour  相似文献   

14.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

15.
The garnet-cordierite zone, the highest-grade zone of the Ryoke metamorphic rocks in the Yanai district, SW Japan, is defined by the coexistence of garnet and cordierite in pelitic rocks. Three assemblages in this zone are studied in detail, i.e. spinel + cordierite + biotite, garnet + cordierite + biotite and garnet + biotite, all of which contain quartz, K-feldspar and plagioclase. The Mg/(Fe + Mg) in the coexisting minerals decreases in the following order: cordierite, biotite, garnet and spinel. Two facts described below are inconsistent with the paragenetic relation in the K2OFeOMgOAl2O3SiO2H2O (KFMASH) system in terms of an isophysical variation. First, garnet and biotite in the last assemblage have Mg/(Fe + Mg) higher than those in the second. Second, the first two assemblages are described by the reaction,
while they occur in a single outcrop. The addition of MnO, ZnO and TiO2 to the system can resolve the inconsistencies as follows. The assemblage garnet + biotite can consist of garnet and biotite higher in Mg/(Fe + Mg) than those in garnet + cordierite + biotite as long as they are enriched in spessartine and depleted in Al, respectively. The assemblage garnet + cordierite + biotite becomes stable relative to spinel + cordierite + biotite with increasing spessartine content or decreasing gahnite content and the Ti content of biotite. The constituent minerals of the assemblages, spinel + cordierite + biotite and garnet + cordierite + biotite, preserve several reaction microstructures indicative of prograde reactions,
and
together with retrograde reactions,
and
This suggests that the pressure-temperature path of the rocks includes an isobaric heating and an isobaric or decompressional cooling. The high-grade areas consisting of the K-feldspar-cordierite zone, sillimanite-K-feldspar zone and garnet-cordierite zone have prograde paths involving isobaric heating and show a southwards increase in pressure with a thermal maximum in the middle. These high-grade zones are closely associated with the gneissose granitic rocks, suggesting that the Ryoke metamorphism, one of the typical low-pressure type, is caused by the heat supply from the syn-tectonic granitic rocks that emplaced at the middle level of the crust. Received: 22 August 1997 / Accepted: 11 May 1998  相似文献   

16.
Cordierite-orthopyroxene migmatitic gneisses exposed in Achankovil unit of the Kerala Khondalite Belt, southern India show evidences of melting, melt extraction and in-situ crystallization of melt under granulite-facies conditions. The sequential mineral assemblages garnet + biotite + orthopyroxene + plagioclase + quartz (± melt) in the mesosomes and garnet + biotite + orthopyroxene + cordierite + plagioclase + K-feldspar + quartz + melt in the melanosomes makes the Achankovil cordierite-orthopyroxene migmatitic gneisses a good example of anatectic rocks, where substantial melt fractions remained in-situ during decompression and cooling. Therefore, the rocks provide an opportunity to investigate deep crustal processes and record of rheological (thermal and mechanical) reequilibration prevailed during the final stages of orogeny. The significance of cordierite formation and its possible relationship with melt formation are investigated applying theoretical calculations in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (MnNCKFMASH) system. Results of numerical modelling of the mineral assemblages in pressure-temperature-composition (P-T-X) pseudosections using Perple_X infer that the sequence of reactions involving formation of cordierite-orthopyroxene-melt assemblage is consistent with an isothermal decompression (with a pressure drop of >1.5 kbars) at high temperatures (>800 °C), forming leucosomes. Biotite dehydration melting reactions, occurring above 4.5 kbars constrain prograde arm of the P-T trajectory and is interpreted as a product of crustal thickening, which was followed by rapid decompression. The final stage of exhumation is characterized by rehydration of cordierites in the melanosome by melt-solid interactions at exceptionally low-pressure (??3.2 kbars) conditions. The high-temperature isothermal decompression inferred from the mineral reactions and P-T-X pseudosections constitute a clockwise P-T path for the exhumation of the lower crust. This clockwise P-T path is consistent with the common tectonic model accepted for the genesis of granulite-facies migmatites during crustal thickening and later unroofing, accompanied with arc-continent collision. Our conclusions indicate low-P metamorphism and anatexis can be traced to convergent setting, where melt buoyancy considerably decreases density of the lithosphere and modifies rheology leading to rapid exhumation of the lower crust. Therefore, the crustal evolution in the Kerala Khondalite Belt is correlated with two stage processes: (i) thickening of the crust in relation to a continental-arc setting, followed by (ii) exhumation along a high-temperature stable geotherm with sufficient pressure release associated with syn- to post-convergence transpression and transtension.  相似文献   

17.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

18.
The geochemistry of the Leisure Bay Formation, Natal Metamorphic Province suggests that its protoliths were greywackes, pelites and arkoses that were deposited in an oceanic island arc environment. These rocks contain the mineral assemblage biotite + hypersthene + cordierite (with hercynite inclusions) + garnet + quartz + feldspar. Numerous generations of garnet genesis are evident from which a long history of metamorphism can be interpreted. M1 involved syn-D1 high temperature/low pressure metamorphism (4kb and >850oC) and dehydration melting to produce essentially anhydrous assemblages particularly in the vicinity of, and probably related to the intrusion of the Munster Suite sills. The inclusions of hercynite in cordierite and the garnet + quartz symplectites after hypersthene + plagioclase (550oC and 5kb) suggests isobaric cooling after M1. This indicates an anticlockwise P-T loop related to the early intrusion of subduction related calc-alkaline magmatic rocks. M2 involved syn-D2 dehydration melting of hydrous assemblages possibly related to the emplacement of many A-type rapakivi charnockite granitoids, which provided heat and loading. The D2 tectonism post-dated all lithologies in the region, except for syn- to late-D2 granitoid plutons, and is interpreted as a transpressional tectonothermal reworking of pre-existing (Proterozoic) crust at 1030Ma.  相似文献   

19.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

20.
Abstract This work uses a simplified model of equilibrium to predict the assemblage sequence and compositional zoning in garnet that should result from prograde metamorphism of common bulk compositions of pelitic rocks. An internally-consistent set of model thermodynamic data are derived for natural mineral compositions from natural assemblages. Equilibrium assemblages can be calculated for pelitic compositions with excess quartz and either muscovite or K-feldspar at any pressure and water pressure. The compositions and abundances of phases in equilibrium assemblages can be calculated where the elements Mg, Fe and Mn are exchanged among phases. The prograde metamorphic assemblage sequences and the effects of pressure on assemblages, predicted by the simulation method presented here, are similar enough to natural observations to suggest that the simulations can be used to analyse natural equilibrium and growth processes. The calculated phase diagrams at moderate and high crustal pressures explain the mineral assemblage sequence produced by prograde metamorphism in common pelitic compositions. Garnet appears by continuous reaction of biotite and chlorite as the garnet-biotite-chlorite divariant field migrates toward higher Mg/Fe ratios over the bulk composition. Staurolite appears in common bulk compositions when garnet and chlorite become incompatible. An aluminum silicate phase can appear when staurolite and chlorite react. Staurolite breaks down at an extremum point to produce garnet. Continuous reaction of biotite and sillimanite causes growth of abundant garnet. The reaction sequence involving garnet, staurolite and aluminum silicates is probably different at low pressure, but the main reason that staurolite and garnet are rare is the restricted compositional range over which their assemblages exist. Andalusite appears by the divariant reaction of chlorite and cordierite appears at low temperature in low pressure assemblages for common bulk compositions by the extremumpoint breakdown reaction of chlorite. Compositional zoning of garnet and the systematic variation of biotite composition in metamorphic sequences indicate that garnet is probably fractionated during growth. Fractionation of garnet causes garnet-consuming, univariant reactions to become multivariant. The metastable persistence of garnet should reduce the abundance and stability range of staurolite. Fractionation of even small quantities of garnet should deplete the equilibrating bulk composition of Mn, but have little effect otherwise. The simulations show that the prograde assemblage sequence in pelitic rocks can be complex in detail, with some assemblages lasting over temperature intervals of only a few degrees. The major prograde reactions that release water are the breakdown of chlorite to form garnet at low grade and the breakdown of muscovite at high grade. The volume of water released by formation of garnet at high grade is also important. These reactions have the capacity to buffer water pressure. The density of anhydrous pelitic rock increases markedly when chlorite breaks down and by the continuous reaction forming garnet at high grade. The heat content is controlled principally by heat capacity and continuous reactions. Discontinuous reactions have little thermal buffering capacity. Simulations of garnet fractionation show that commonly-observed garnet zoning profiles can be formed by garnet growth in the assemblage garnet-biotite-chlorite in common bulk compositions. A reversal of Fe-zoning in garnet can occur when garnet resumes growth above staurolite grade in the assemblage garnetbiotite-sillimanite. Discontinuities in zoning profiles can be caused only by disequilibrium. The disequilibrium can be due to either metastable persistence during a hiatus in growth or to growth by irreversible reaction. Because the appearance of garnet is controlled by a continuous rather than a discontinuous reaction, the appearance of garnet is very sensitive to bulk composition. The early development of garnet is also sensitive to the pressure and water pressure of metamorphism. As a consequence the first garnet isograd is of limited thermometric value. Metastable persistence of kyanite and manite at high grades could reduce the abundance of garnet and allow biotite to persist. Metastable persistence would also limit the of cordierite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号