首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-dated records of tropical glacier fluctuations are essential for developing hypotheses and testing proposed mechanisms for past climate changes. Since organic material for radiocarbon dating is typically scarce in low-latitude, high-altitude environments, surface exposure-age dating, based on the measurement of in situ produced cosmogenic nuclides, provides much of the chronologic information on tropical glacier moraines. Here, we present a locally calibrated 10Be production rate for a low-latitude, high-altitude site near Quelccaya Ice Cap (∼13.95°S, 70.89°W, 4857 m asl) in the southeastern Peruvian Andes. Using an independent age (12.35 +0.2, −0.02 ka) of the late glacial Huancané IIa moraines based on thirty-four bracketing radiocarbon ages and twelve 10Be concentrations of boulders on the moraines, we determine a local production rate of 43.28 ± 2.69 atoms gram−1 year−1 (at g−1 yr−1). Reference 10Be production rates (i.e., production rates by neutron spallation appropriate for sea-level, high-latitude sites) range from 3.97 ± 0.09 to 3.78 ± 0.09 at g−1 yr−1, determined using scaling after Lal (1991) and Stone (2000) and depending on our assumed boulder surface erosion rate. Since our boulder surface erosion rate estimate is a minimum value, these reference production rates are also minimum values. A secondary control site on the Huancané IIIb moraines suggests that the 10Be production rates are at least as low as, or possibly lower than, those derived from the Huancané IIa moraines. These sea-level, high-latitude production rates are at least 11–15% lower than values derived using the traditional global calibration dataset, and they are also lower than those derived from the late glacial Breque moraine in the Cordillera Blanca of Peru. However, our sea-level, high-latitude production rates agree well with recently published, locally calibrated production rates from the Arctic, New Zealand, and Patagonia. The production rates presented here should be used to calculate 10Be exposure ages in low-latitude, high-altitude locations, particularly in the tropical Andes, and should improve the ability to compare the results of studies using 10Be exposure-age dating with other chronological data.  相似文献   

2.
Shore platforms control wave energy transformation which, in turn, controls energy delivery to the cliff toe and nearshore sediment transport. Insight into shore platform erosion rates has conventionally been constrained at millimetre-scales using micro-erosion metres, and at metre-scales using cartographic data. On apparently slowly eroding coasts, such approaches are fundamentally reliant upon long-term observation to capture emergent erosion patterns. Where in practise timescales are short, and where change is either below the resolution or saturates the mode of measurement, the collection of data that enables the identification of the actual mechanisms of erosion is hindered. We developed a method to monitor shore platform erosion at millimetre resolution within metre-scale monitoring plots using Structure-from-Motion photogrammetry. We conducted monthly surveys at 15 0.25 m2 sites distributed across the Hartle Loup platform in North Yorkshire, UK, over one year. We derived topographic data at 0.001 m resolution, retaining a vertical precision of change detection of 0.001 m. We captured a mean erosion rate of 0.528 mm yr-1, but this varied considerably both across the platform and through the year. We characterized the volume and shape of eroded material. The detachment volume–frequency and shape distributions suggest that erosion happens primarily via removal of shale platelets. We identify that the at-a-point erosion rate can be predicted by the distance from the cliff and the tidal level, whereby erosion rates are higher closer to the cliff and at locations of higher tidal duration. The size of individual detachments is controlled by local micro-topography and rock structure, whereby larger detachments are observed on more rough sections of the platform. Faster erosion rates and larger detachments occur in summer months, rather than in more energetic winter conditions. These results have the potential to form the basis of improved models of how platforms erode over both short- and long-timescales. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Cosmogenic nuclide dating of glacial landforms may lead to ambiguous results for ice retreat histories. The persistence of significant cosmogenic concentrations inherited from previous exposure may increase the apparent exposure ages for polished bedrocks affected by limited erosion under ice and for erratic boulders transported by glaciers and previously exposed in high-altitude rock walls. In contrast, transient burying by moraines, sediments and snow decreases the apparent exposure age. We propose a new sampling strategy, applied to four sites distributed in the Arc and Arve valleys in the Western Alps, to better constrain the factors that can bias exposure ages associated with glacial processes. We used the terrestrial cosmogenic nuclide 10Be (TCN) to estimate the exposure time from paired sampling of depth profiles in polished bedrock and on overlying erratic boulders. For a given sampling site, the exposure ages for both the polished bedrock and boulder are expected to be the same. However, in six cases out of seven, boulders had significantly higher 10Be surface concentrations than those of the associated polished surfaces. In present and past glacial processes, the 10Be distribution with depth for boulders and bedrocks implies the presence of an inheritance concentration of 10Be. Our study suggests that 10Be concentrations in erratic boulders and in polished bedrocks provide maximum and minimum exposure ages of the glacial retreat, respectively. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

4.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Sidewall erosion because of rockfalls is one of the most efficient erosional processes in the highest parts of mountain ranges; it is therefore important to quantify sidewall erosion to understand the long-term evolution of mountainous topography. In this study, we analyse how the 10Be concentration of supraglacial debris can be used to quantify sidewall erosion in a glaciated catchment. We first analyse, in a glaciated catchment, the cascade of processes that move a rock from a rockwall to a supraglacial location and propose a quantitative estimate of the number of rockfalls statistically mixed in a supraglacial sand sample. This model incorporates the size of the rockwall, a power law distribution of the size of the rockfalls and the mean glacial transport velocity. In the case of the Bossons glacier catchment (Mont Blanc massif), the 10Be concentrations obtained for supraglacial samples vary from 1.97 ± 0.24 to 23.82 ± 1.68 × 104 atoms g−1. Our analysis suggests that part of the 10Be concentration dispersion is related to an insufficient number of amalgamated rockfalls that does not erase the stochastic nature of the sidewall erosion. In the latter case, the concentration of several collected samples is averaged to increase the number of statistically amalgamated rockfalls. Variable and robust 10Be-derived rockwall retreat rates are obtained for three distinct rockfall zones in the Bossons catchment and are 0.19 ± 0.08 mm year−1, 0.54 ± 0.1 mm year−1 and 1.08 ± 0.17 mm year−1. The mean 10Be retreat rate for the whole catchment (ca. 0.65 mm year−1) is close to the present-day erosion rate derived from other methods. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Large cliff failures involving forward toppling over a basal hinge have occurred on more than half of the plateau edge of Ben Lomond, northeastern Tasmania. This mode of failure, which is readily identified from the columnar structure of the dolerite involved, has affected up to 107 m3 of rock at a time and a total of more than 50 × 106 m3 in all the cases which can still be identified. It represents perhaps the most important form of cliff retreat, amounting to a rate of 0.2 mm yr?1 over the last 100,000 years. Topographic evidence and joint surveys suggest that two different mechanisms have produced the topples on Ben Lomond. One has involved failure in the sediments underlying the dolerite with consequent foundering and cambering of large sections of the plateau edge. This mechanism accounts for relatively few of the Ben Lomond topples, though it includes the largest individual cases. The second mechanism, dominant in most of the topples, involved slab failure in the cliffs. Both modes of failure have been facilitated by vertical weaknesses within the bedrock and both require an initially steep cliff profile. Because of the latter requirement, which is not met on the other mountains of northeastern Tasmania, large-scale topples are found only on Ben Lomond, and only there where glacial steepening of the cliff has been possible. Following the initial failure, topples of both types have migrated downslope by block sliding for distances up to 2 km.  相似文献   

8.
We challenge the notion of steady‐state equilibrium in the context of progressive cliff retreat on micro‐tidal coasts. Ocean waves break at or close to the abrupt seaward edge of near‐horizontal shore platforms and then rapidly lose height due to turbulence and friction. Conceptual models assume that wave height decays exponentially with distance from the platform edge, and that the platform edge does not erode under stable sea‐level. These assumptions combine to a steady‐state view of Holocene cliff retreat. We argue that this model is not generally applicable. Recent data show that: (1) exponential decay in wave height is not the most appropriate conceptual model of wave decay; (2) by solely considering wave energy at gravity wave frequencies the steady‐state model neglects a possible formative role for infragravity waves. Here we draw attention to possible mechanisms through which infragravity waves may drive cliff retreat over much greater distances (and longer timescales) than imaginable under the established conceptual model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The production rate of cosmogenic 3He in apatite, zircon, kyanite and garnet was obtained by cross-calibration against 10Be in co-existing quartz in glacial moraine boulders from the Nepalese Himalaya. The boulders have 10Be ages between 6 and 16 kyr and span elevations from 3200 to 4800 m. In all of these minerals 3He correlates with 10Be and is dominantly cosmogenic in origin. After modest correction for non-cosmogenic components, 3He/10Be systematics imply apparent sea-level high-latitude (SLHL) apparent production rates for 3He of 226 atoms g? 1 yr? 1 in zircon, 254 atoms g? 1 yr? 1 in apatite, 177 atoms g? 1 yr? 1 in kyanite, and 153 atoms g? 1 yr? 1 in garnet. These production rates are unexpectedly high compared with rates measured elsewhere in the world, and also compared with proposed element-specific production rates. For apatite and zircon, the data are sufficient to conclude that the 3He/10Be ratio increases with elevation. If this reflects different altitudinal scaling between production rates for the two isotopes then the SLHL production rates estimated by our approach are overestimates. We consider several hypotheses to explain these observations, including production of 3He via thermal neutron capture on 6Li, altitudinal variations in the energy spectrum of cosmic-ray neutrons, and the effects of snow cover. Because all of these effects are small, we conclude that the altitudinal variations in production rates of cosmogenic 3He and 10Be are distinct from each other at least at this location over the last ~ 10 kyr. This conclusion calls into question commonly adopted geographic scaling laws for at least some cosmogenic nuclides. If confirmed, this distinction may provide a mechanism by which to obtain paleoelevation estimates.  相似文献   

11.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Our understanding of sea-cliff erosion processes and their response to recent and/or projected environmental changes such as sea-level rise, climate change and anthropogenic development hinges on our ability to quantify sea-cliff retreat rates and their variability through time. Here, we focus on Israel's Mediterranean ‘Sharon’ sea-cliff as a case study for examining the significance of recent short-term (i.e. annual to decadal) cliff-top retreat rates that appear to exceed longer-term rates of ‘background’ (i.e. centennial to millennial) retreat by 1–2 orders of magnitude. We demonstrate that an inherent sampling bias in rate estimates inferred from observation intervals shorter than process episodicity can also explain such a pattern. This potential ambiguity leads to a striking paradox where despite highly accurate and robust documentation of recent cliff-top retreat, such as that obtained from aerial photographs and/or instrumental surveys, the short-term retreat rates of episodically retreating sea cliffs remain poorly constrained. To address this key data gap along the Sharon sea cliff we employed a sediment budget approach that focuses on quantifying the continuous wave scouring of cliff-collapsed material from the shore platform as a rate-limiting process for episodic retreat of the cliff above. We used four high-resolution (0.5 m/pixel) airborne LiDAR data sets acquired between 2006 and 2015 to determine short-term maximum retreat rates of up to ~0.08 m/yr during this nine-year period. These modern retreat rates compare to the cliff's background retreat rate of 0.03 to 0.09 m/yr since the mid-Holocene, as determined herein from multiple geologic and archeological observations. Our results demonstrate that previously reported twentieth century cliff-top retreat rates for this sea cliff, which range up to values of several meters per year, are biased and that sea-cliff erosion rates have not yet been significantly impacted by recent environmental changes in the eastern Mediterranean basin, such as the restriction of sediment supply following emplacement of the Nile's Aswan dam system. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Research indicates that the aeolianite (Kurkar) cliffs along the Israeli Mediterranean coastline have continuously retreated eastward during the last few decades. There seems to be no dispute among Earth scientists regarding the general trend of cliff retreat. However the majority of papers displaying cliff retreat rates are based upon comparison of aerial photographs. Their lack of advanced geometric measurement methods causes a high margin of error. Public attention is focused upon the Beit‐Yannay coastal cliff since private homes are located along the southern section of the cliff crest. The current research compares the historic location of the cliff crest edge at Beit‐Yannay as observed in a series of aerial photographs taken during the period 1918–2000. Quantitative measurement methods included applications of satellite geodesy and digital photogrammetry and mapping. Research results offer quantitative, consecutive and highly accurate data regarding retreat rates over a relatively long period of 82 years. It is concluded that: 1. Annual average cliff retreat rates of the cliff crest is 20 cm/year. 2. Categorization of the study time span reveals periods displaying varying retreat rates such as 27 cm/year during 1918–1946, 21 cm/year during 1946–1973 and 10 cm/year during 1973–2000. 3. Maximum retreat distances of the cliff crest, over the study period were found to be approximately 25 m along the northern, lowest section of the cliff. Minimum distances of 11 m were identi?ed at the highest, southern section of the cliff. 4. The eolianite (Kurkar) cliffs along the Israeli Mediterranean coast throughout the 20th century have been an important source of sediment, contributing approximately 24 × 106 m3 of sediments to the sediment balance of Israeli beaches. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
We investigate how waves are transformed across a shore platform as this is a central question in rock coast geomorphology. We present results from deployment of three pressure transducers over four days, across a sloping, wide (~200 m) cliff‐backed shore platform in a macrotidal setting, in South Wales, United Kingdom. Cross‐shore variations in wave heights were evident under the predominantly low to moderate (significant wave height < 1.4 m) energy conditions measured. At the outer transducer 50 m from the seaward edge of the platform (163 m from the cliff) high tide water depths were 8+ m meaning that waves crossed the shore platform without breaking. At the mid‐platform position water depth was 5 m. Water depth at the inner transducer (6 m from the cliff platform junction) at high tide was 1.4 m. This shallow water depth forced wave breaking, thereby limiting wave heights on the inner platform. Maximum wave height at the middle and inner transducers were 2.41 and 2.39 m, respectively, and significant wave height 1.35 m and 1.34 m, respectively. Inner platform high tide wave heights were generally larger where energy was up to 335% greater than near the seaward edge where waves were smaller. Infragravity energy was less than 13% of the total energy spectra with energy in the swell, wind and capillary frequencies accounting for 87% of the total energy. Wave transformation is thus spatially variable and is strongly modulated by platform elevation and the tidal range. While shore platforms in microtidal environments have been shown to be highly dissipative, in this macro‐tidal setting up to 90% of the offshore wave energy reached the landward cliff at high tide, so that the shore platform cliff is much more reflective. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
We examine 10Be concentration in two pit profiles in the Parkajoki area at ∼67°N on the northern Fennoscandian shield in northern Sweden. Due to repeated cover by cold-based, non-erosive ice sheets, the area retains many relict non-glacial features, including tors and saprolites. In the examined pit profiles, gruss-type saprolite developed from weathering of intermediate igneous rocks is overlain unconformably by Weichselian till.Our results show that 10Be concentrations found in the till greatly exceed the levels of 10Be that can have accumulated since deglaciation at ∼11 ka and are comparable to those reported from Pliocene and Early Pleistocene tills in North America. Old tills with grussified boulders at depth were excavated in the Parkajoki area and correlations with neighbouring parts of Finland indicate a Middle Pleistocene or older age. Evidence from pit excavations and geochemistry shows that the underlying saprolites have been truncated by glacial erosion and that previously weathered material has been incorporated into the till sequence. Hence, 10Be inventories in the tills are dominated by material recycled from Middle Pleistocene or older soils, near-surface sediments and saprolite, and cannot be used to date the periods of till deposition. The retention of relict 10Be in the tills nonetheless confirms minimal glacial erosion.Concentrations of meteoric 10Be in the saprolites are lower than any reported saprolite concentrations measured in other settings. Uncertainty in the pre-glaciation 10Be concentrations in the saprolites makes age determinations difficult. One possibility is that that the saprolite had higher 10Be concentrations in the past but that saprolite formation ended after glaciation and burial by till and that the 10Be has substantially decayed. Modelling of the meteoric 10Be depth profiles in this case suggests that the saprolites in the Parkajoki area were formed at a minimum of 2 Ma. Erosion of the saprolite allows an older age of up to ∼5 Ma, with up to 250 cm of material removed and incorporated into later tills. A second possibility is that concentrations of meteoric 10Be in the saprolite were originally lower, with formation of the saprolite in a period or periods of ice- and permafrost-free conditions before 0.8 Ma.  相似文献   

16.
A shore platform on the western coast of Galicia in northwestern Spain has been inherited from interglacial stages when sea level was similar to today. The wide, gently sloping intertidal platform is backed in places by supratidal rock ledges, and in other places by a steeper and narrower supratidal ramp. The gradient of the intertidal platform is consistent with the relationship between platform gradient and tidal range, but the slope of the ramp is much too high. The abandoned and degraded sea cliff is grass-covered along most of this coast, and the ledges and the ramp, which extend up to several metres above the highest tides, are covered by lichen and, in places, by salt-tolerant plants. Radiocarbon-dated sediments in the cliff, which range up to 36 000 years in age, lie on top of an ancient beach deposit. The former beach, remnants of which are found in situ on the ramp and rock ledges, as well as two caves that are filled with the dated sediments, are probably last interglacial in age. The morphological and sedimentary evidence suggests that the supratidal ramp and ledges were also formed during the last interglacial stage, whereas the wider intertidal platform is probably the product of several older interglacials, when sea level was generally similar to today. A general model is proposed for the inheritance of shore platforms in macro- and microtidal environments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A mathematical model was used to study shore platform development. Mechanical wave erosion was dependent on such variables as tidal range, wave height and period, breaker height and depth, breaker type, surf zone width and bottom roughness, submarine gradient, rock resistance and the elevational frequency of wave action within the intertidal zone. Also included were the effects of sand and pebble accumulation, cliff height and debris mobility, and downwearing associated with tidal wetting and drying. The occurrence, location and thickness of beaches often depended on initially quite minor variations in platform morphology, but owing to their abrasive or protective effect on underlying rock surfaces, they were able to produce marked differences in platform morphology. Generalizations are difficult, but the model suggests that platform gradient increases with tidal range. Platform width also increases with tidal range with slow downwearing but it decreases with fast downwearing. Platform gradient decreases and width increases with wave energy, and decreasing rock resistance and platform roughness. With low tidal range, platform gradient is generally lower and platform width greater with beaches of fine sand than with gravel, but the relationship is more variable with a high tidal range. Platform width increases and platform gradient decreases with the rate of downwearing on bare surfaces, particularly in low tidal range environments, but the pattern is less clear on beach‐covered platforms. Platforms with large amounts of beach sediment tend to be narrower and steeper than bare platform surfaces. Platform gradient increases and platform width decreases with increasing cliff height and with decreasing cliff debris mobility. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Cosmogenic nuclides in river sediment have been used to quantify catchment-mean erosion rates. Nevertheless, variable differences in 10Be concentrations according to grain size have been reported. We analyzed these differences in eleven catchments on the western side of the Andes, covering contrasting climates and slopes. The data include eight sand (0.5–1 mm) and gravel (1–3 cm) pairs and twelve sand (0.5–1 mm) and pebble (5–10 cm) pairs. The difference observed in three pairs can be explained by a difference in the provenance of the sand and coarser sediment. The other sand–pebble pairs show a lower 10Be concentration in the pebbles, except for one pair that shows similar concentrations. Two sand–gravel pairs show a lower 10Be concentration in the gravel and the other five pairs show a higher 10Be concentration in the gravel. Differences in climate do not reveal a particular influence on the 10Be concentration between pairs. The analysis supports a model where pebbles and gravel are mainly derived from catchment areas that are eroding at a faster rate. The five gravel samples with high 10Be concentrations probably contain gravel that were derived from the abrasion of cobbles exhumed at high elevations. In order to validate this model, further work should test if pebbles are preferentially exhumed from high erosion rate areas, and if the difference between pebbles with high 10Be concentrations and sand decreases when the erosion rate tends to be homogeneous within a catchment.  相似文献   

19.
Cliff erosion along a section of the West Wales coastline is described. Rockfalls, mudslides, and retreating fencelines are evidence of current activity. Measurements over a two-year period (1983-85) gave mean annual recession figures of up to 0.25 m yr−1 for glacial embayments. Wave refraction modelling and longshore beach surveys confirmed the existence of ‘high’ and ‘low’ beaches. Factors influencing variation in recession rates were identified and measured. Regression analysis suggested that the volume of beach-face material was the dominant explanatory variable in short-term cliff erosion.  相似文献   

20.
Infragravity wave (IGW) transformation was quantified from field measurements on two shore platforms on New Zealand's east coast, making this the first study to describe the presence, characteristics and behaviour of IGWs on rock platform coasts. Data was collected using a cross‐shore array of pressure transducers during a 22 hour experiment on Oraka shore platform and a 36 hour experiment at Rothesay Bay shore platform. A low pass Fourier filter was used to remove gravity wave frequency oscillations, allowing separate analysis of IGWs and the full wave spectrum. Offshore IGW heights were measured to be 7 cm (Oraka) and 9 cm (Rothesay Bay), which were 21% (Oraka) and 7.5% (Rothesay Bay) the height of incident wave height. At the cliff toe, significant IGW height averaged 15 cm at Oraka and 13 cm at Rothesay Bay. This increase in IGW height over the platform during both experiments is attributed to shoaling of 40 to 55% over the last 50–60 m before the cliff toe, respectively. Shoaling across the platform was quantified as the change in IGW height from the platform edge to cliff toe, resulting in a maximum increase of 1·88 and 2·63 on Rothesay Bay and Oraka platforms. IGW height at the cliff toe showed a strong correlation with incident wave height. The proportional increase in IGW height shows a strong correlation to water level on each platform. The rate of shoaling of long period waves on the shallow, horizontal platforms increased at higher water levels resulting in a super elevation in water level at the cliff toe during high tide. Greater IGW shoaling was also observed on the wider (Oraka) shore platform. Results from this study show the first measurements of IGWs on shore platforms and identify long wave motion a significant process in a morphodynamic understanding of rock coast. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号