首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
从最新地面活断层的不连续性,断层滑动速率以及古地震研究的角度讨论安宁河断裂带北段的地震潜在能力,认为不连续的活断层可能成为各自独立的地震破裂单元,从而决定了地震的潜在能力,其中,野鸡洞破裂段的潜在地震能力最强,可达7级。上次地震至今的平静时间已接近古地震的平均重现间隔,因而具有高度的地震危险性  相似文献   

2.
对历史记载的公元1738年玉树西北地震的震级及其发震构造目前仍存有争议。卫星影像解译和野外调查发现沿甘孜-玉树断裂当江段分布一条长约75km的左旋走滑地震地表破裂带,其最大同震水平位移约2.1m。综合分析该地表破裂带特征、探槽揭露信息、测年结果以及历史文献记载等资料,认为当江段应为1738年玉树西北地震的发震断层,基于震例类比和经验公式估算该次地震的震级为71/2级。沿甘孜-玉树断裂的历史地震破裂分布显示,玉树段在隆宝镇以西存在近50km长的破裂空段;当江段距1738年地震的离逝时间也可能已经接近其地震复发周期,上述两个段落未来均存在大震危险。  相似文献   

3.
龙陵-澜沧新生断裂带地震破裂分段与地震预测研究   总被引:5,自引:2,他引:5       下载免费PDF全文
龙陵 -澜沧新生断裂带的地震活动具频度高、强度大、周期短等特征 ,并以双震或震群型为主。断裂带由多条次级新生断层组成 ,呈斜列或共轭式展布 ,根据结构、规模、地震活动差异等因素把断裂带划分为 4个一级段、13个二级段 ,其中有 4个二级段又可划分出 8个三级段。历史上发生过大震、强震并有地震断层伴生的断层段为地震破裂单元 ;断裂带上晚第四纪有活动并有古地震事件 ,但无历史地震记载的地段为断层闭锁单元 ;次级断层之间的阶区或连接点为障碍体单元。从地震破裂特征分析 ,断裂带由破裂、闭锁、障碍体单元组成 ,根据地震、古地震、活断层、断层阶区的活动规律 ,断裂带可划分出 9个破裂单元、8个闭锁单元、10个障碍体单元。三者之间呈迁移、触发和转换能量的关系。根据这些关系和地震构造标志 ,对断裂带上未来可能发生大震、强震、中强震的地区分别作了预测。预测的危险区有 9个 ,其中大震区 1个 (永康 -永德地区 ) ,强震区 3个 (马站、石灰窑、酒房-勐混 ) ,中强震区 5个 (下顺江、里仁、大岗山、南明 -澜沧、勐遮  相似文献   

4.
The NE-trending Hinagu fault zone, length 81 km, is one of the major active faults in Kyushu, Japan. From north to south, it is divided into three segments based on geomorphic features and paleoseismic behavior: the Takano-Shirahata, Hinagu, and Yatsushiro Sea segments. The 2016 Kumamoto earthquake produced a 6-km-long surface rupture with a dextral strike-slip displacement on the northern part of the Takano-Shirahata segment. Surface rupture, a faint east-side-up flexure with a vertical offset of less than 8 cm, was observed near the middle of the Takano-Shirahata segment. To examine past surface-rupturing earthquakes on the Takano-Shirahata segment, including rupture frequency and timing, we conducted a paleoseismic study with boring and trenching at Yamaide. A trench across the surface rupture exposed multiple fault strands associated with multiple surface-rupturing events that deformed several strata of fine-grained sediments. By structural and stratigraphic interpretation, high-density radiocarbon dating and tephra analysis, and Bayesian modeling, we constrained the timing of seven events, Events 1–7, to 0.84–1.25, 1.31–7.06, 9.99–11.0, 10.8–12.1, 12.0–13.0, 14.2–15.1, and before 14.8 kcal BP. Slip during Events 1–6 was obviously larger than the 2016 slip. The estimated average recurrence interval was about 2596–2860 years, but the interval between Events 2 and 3 was much longer than other intervals. Moreover, the vertical throw associated with Event 2 was larger than that of other events. This implies that the Takano-Shirahata segment has a period with rare larger earthquakes and a period with frequent smaller earthquakes. Some events might have produced ruptures on both the Takano-Shirahata and the northern part of the Hinagu segments simultaneously or in a short time. The variety of recurrence intervals suggests that the seismic activity has been affected by one or both activities of the Futagawa fault zone and the Hinagu segment.  相似文献   

5.
The Chi‐Chi earthquake (MW = 7.6) took place in central western Taiwan in 1999. The earthquake caused reactivation of the Chelungpu Fault and resulted in 100‐km‐long surface ruptures. The fault strikes mostly north–south to NNE–SSW; however, the northern tip of the southern segment of the surface ruptures rotates clockwise to define an east–west trend, then jumps to a shorter NNW‐trending rupture. The largest vertical displacement is recorded in the Shihkang area of the Shihkang–Shangchi Fault Zone, where vertical slips are up to 8–10 m. The Shihkang–Shangchi Fault Zone displays a complex fault pattern as a linkage damage zone between two fault segments with the greatest concentration of faults and fractures. Our new interpretation, based on recent published geometric, kinematic, and geophysical studies on the Chi‐Chi earthquake fault, suggests that the Shihkang–Shangchi Fault Zone is not a simple termination zone, but may be an ‘overstep zone’ or a ‘transfer zone’. Slip analysis along the surface ruptures indicates that they are composed of three fault segments and the amount of slip partly depends on the intersection angle between slip direction and fault strike. Our numerical modeling for the area indicates that Coulomb stress changes are mainly concentrated on tips and bends of the surface ruptures. Slip patterns indicate that the fault propagates toward the northeast. Therefore, this study suggests high potential for future earthquake activity along the unruptured Shangchi segment. Hence, future geohazard studies should focus on the Shangchi segment to evaluate potential earthquakes, determine recurrence intervals, and reduce future earthquake hazards.  相似文献   

6.
逆冲构造带的分段性研究是评价该类发震构造地震危险性的基础工作。荥经-马边-盐津逆冲构造带是青藏高原东南边缘重要的NW向强震构造带,该构造带以逆冲错动为主要活动形式,其组合形式与逆冲强度存在南北差异。通过NE向横向断裂的构造地貌分析,发现横向断裂以右旋走滑活动为主,兼有倾滑活动。根据其与纵向断裂的交接关系,将横向断裂概括为横向分割断裂、横向撕裂断裂和横向转换断裂3种类型,讨论了3类横向断裂在逆冲构造带分段中所起的不同作用,进而将荥经-马边-盐津逆冲构造带分为独立的3段,并分析了各段的地震活动特征。研究表明,荥经-马边-盐津逆冲构造带以横向断裂为标志的3分段特点,既体现了段与段之间断裂活动强度、地震破裂强度与步调的差异,又体现了段内地震破裂步调的一致性,表明横向断裂在一定程度上控制了逆冲构造带的破裂分段,只是横向断裂的类型不同,其所起的作用也不同  相似文献   

7.
Field investigations and analyses of satellite images and aerial photographs reveal that the 2016 M w 7.1 (Mj 7.3) Kumamoto earthquake produced a ~40-km surface rupture zone striking NE-SW on central Kyushu Island, Japan. Coseismic surface ruptures were characterized by shear faults, extensional cracks, and mole tracks, which mostly occurred along the pre-existing NE-SW-striking Hinagu–Futagawa fault zone in the southwest and central segments, and newly identified faults in the northeast segment. This study shows that (i) the Hinagu–Futagawa fault zone triggered the 2016 Kumamoto earthquake and controlled the spatial distribution of coseismic surface ruptures; (ii) the southwest and central segments were dominated by right-lateral strike-slip movement with a maximum in-site measured displacement of up to 2.5 m, accompanied by a minor vertical component. In contrast, the northeast segment was dominated by normal faulting with a maximum vertical offset of up to 1.75 m with a minor horizontal component that formed graben structures inside Aso caldera; (iii) coseismic rupturing initiated at the jog area between the Hinagu and Futagawa faults, then propagated northeastward into Aso caldera, where it terminated. The 2016 M w 7.1 Kumamoto earthquake therefore offers a rare opportunity to study the relationships between coseismic rupture processes and pre-existing active faults, as well as the seismotectonics of Aso volcano.  相似文献   

8.
INTRODUCTIONThe Yingjing-Mabian-Yanjinthrust fault zone lies on the southeastern margin of Tibet .It startsfromthe south of Tianquaninthe north,and it extends southwards through Yingjing, Emei , Ebian,Mabian,Lidian to the north of Yanjin of Yunnan, with a total length of 275 km. The fault zoneintersects withthe southernsegment of the Longmengshanthrust fault zone onits northernsegment andborders the Huayingshan-Lianfengfault zone onits southernsegment .It is a 30 km-wide NW-trendin…  相似文献   

9.

Our field investigation obtains new evidence of the later Quaternary activity and recent large earthquake ruptures of the Garzê-Yushu fault. The average left-lateral slip-rate along the fault is determined to be (12±2) mm/a for the last 50000 years from both offset landforms and ages of the correlative sediments. This result is very close to the estimated average left-lateral slip-rate for the Xianshuihe fault, suggesting that the horizontal movement along the northern boundary of the Sichuan-Yunnan active tectonic block and the northeastern boundary of the Qiangtang active tectonic block has been basically harmonious during the later Quaternary period. Remains of ground ruptures of recent large earthquakes have been discovered along all 3 segments of the fault, of which, the 1896 rupture on the northwestern segment is at least 70 km long, and its corresponding earthquake could be of moment magnitude 7.3. The latest rupture on the middle segment of the fault has a length of about 180 km, and was produced by an unknown-age large earthquake that could have a moment magnitude of about 7.7. Along the southeastern segment of the fault, the latest unknown-age rupture is about 65 km long and has a maximum left-lateral coseismic displacement of 5.3 m, and its corresponding earthquake is estimated to be as large as about 7.3 of moment magnitude. Based on relevant investigation, an inference has been drawn that the later two large earthquakes probably occurred in 1854 and 1866, respectively. These demonstrate that the individual segments of the studied Garzê-Yushu fault are all able to produce large earthquakes.

  相似文献   

10.
Through study on trenches, analysis of recurrence characteristics and recurrence interval cluster/gap of strong earthquakes along the major active faults on the northern border of Ordos block, we found 62 paleoearthquakes that occurred in the late Quaternary, including 33 earthquakes occurring in the Holocene. The recurrence characteristics of the paleoearthquakes are different at three levels, segments, faults, and fault zones. The strong seismic sequence on the independent segments is mostly characterized by long- and short-interval recurrences, while that on the faults and in fault zone is characterized clearly by random and cluster recurrences. Results of the moving window test indicate that the probabilities of “temporal cluster or gap”, caused by random coincidence as opposed to intersegment contagion, are 64% and 70% for the Serteng piedmont fault and for the south-border fault of Wula Mountains, respectively, no clear interaction among the segments of each fault; while the probability is 26.8% for the whole fault zone, suggesting a clear interaction among the faults of this fault zone. These recurrence characteristics may imply an effect of the entire block motion on the recurrence of strong earthquakes. Moreover, the elapsed time for the Wujumeng Pass-Dongfeng Village segment of Serteng piedmont fault and the Tuzuo Banner-Wusutu and the Hohhot segments of Daqingshan piedmont fault has exceeded the average recurrence interval, hence these three segments may be the possible places for future strong earthquakes.  相似文献   

11.
Our field investigation obtains new evidence of the later Quaternary activity and recent large earthquake ruptures of the Garzê-Yushu fault. The average left-lateral slip-rate along the fault is determined to be (12 ± 2) mm/a for the last 50000 years from both offset landforms and ages of the correlative sediments. This result is very close to the estimated average left-lateral slip-rate for the Xianshuihe fault, suggesting that the horizontal movement along the northern boundary of the Sichuan-Yunnan active tectonic block and the northeastern boundary of the Qiangtang active tectonic block has been basically harmonious during the later Quaternary period. Remains of ground ruptures of recent large earthquakes have been discovered along all 3 segments of the fault, of which, the 1896 rupture on the northwestern segment is at least 70 km long, and its corresponding earthquake could be of moment magnitude 7.3. The latest rupture on the middle segment of the fault has a length of about 180 km, and was produced by an unknown-age large earthquake that could have a moment magnitude of about 7.7. Along the southeastern segment of the fault, the latest unknown-age rupture is about 65 km long and has a maximum left-lateral coseismic displacement of 5.3 m, and its corresponding earthquake is estimated to be as large as about 7.3 of moment magnitude. Based on relevant investigation, an inference has been drawn that the later two large earthquakes probably occurred in 1854 and 1866, respectively. These demonstrate that the individual segments of the studied Garzê-Yushu fault are all able to produce large earthquakes.  相似文献   

12.
The Mw 6.2 (Mj 6.8) Nagano (Japan) earthquake of 22 November 2014 produced a 9.3-km long surface rupture zone with a thrust-dominated displacement of up to 1.5 m, which duplicated the pre-existing Kamishiro Fault along the Itoigawa–Shizuoka Tectonic Line (ISTL), the plate-boundary between the Eurasian and North American plates, northern Nagano Prefecture, central Japan. To characterize the activity of the seismogenic fault zone, we conducted a paleoseismic study of the Kamishiro Fault. Field investigations and trench excavations revealed that seven morphogenic paleohistorical earthquakes (E2–E8) prior to the 2014 Mw 6.2 Nagano earthquake (E1) have occurred on the Kamishiro Fault during the last ca. 6000 years. Three of these events (E2–E4) are well constrained and correspond to historical earthquakes occurring in the last ca. 1200 years. This suggests an average recurrence interval of ca. 300–400 years on the seismogenic fault of the 2014 Kamishiro earthquake in the past 1200 years. The most recent event prior to the 2014 earthquakes (E1) is E2 and the penultimate and antepenultimate faulting events are E3 and E4, respectively. The penultimate faulting event (E3) occurred during the period of AD 1800–1400 and is associated with the 1791 Mw 6.8 earthquake. The antepenultimate faulting event (E4) is inferred to have occurred during the period of ca. AD 1000–700, likely corresponding to the AD 841 Mw 6.5 earthquake. The oldest faulting event (E8) in the study area is thought to have occurred during the period of ca. 5600–6000 years. The throw rate during the early Holocene is estimated to be 1.2–3.3 mm/a (average, 2.2 mm/a) with an average amount of characteristic offset of 0.7–1.1 m produced by individual event. When compared with active intraplate faults on Honshu Island, Japan, these slip rates and recurrence interval estimated for morphogenic earthquakes on the Kamishiro Fault along the ISTL appear high and short, respectively. This indicates that present activity on this fault is closely related to seismic faulting along the plate boundary between the Eurasian and North American plates.  相似文献   

13.
Alle.  CR  闻学泽 《地震学报》1989,11(4):362-372
由五条左旋走滑的主要分支断层组成的鲜水河全新世断裂带,以惠远寺拉分区为界,可分为结构特征不同的两段:北西段结构较为简单;南东段则表现了由若干分支断层组成的复杂结构.这种断裂结构的分段性,造成了历史强震活动性的分段差异,同时也可能是断层近代滑动速率空间变化的主要原因. 该断裂带主要的几何特征之一是具有多重羽列性质.本文按阶区尺度的相对大小,作了羽列级别划分.其中,A级羽列不连续区伴有明显的地貌效应,是该断裂带分段的界限,其对历史上7级左右地震的破裂具有较明显的终止作用;B,C两级羽列不连续区也有一定程度的地貌显示,但对历史上大地震的破裂不具有明显的终止作用;更低级别的羽列几何则是在第四纪盖层中发育的地震地裂缝的主要组合型式. 另一种重要的几何特征是断层弯曲.无论沿整个断裂带还是在一些断层段上,均存在着不同程度的走向弯曲.局部弯曲的结果,可能是造成一些大地震时不对称破裂扩展和烈度衰减的重要几何影响因素,同时也可能是大地震或强震原地重复的构造条件之一.文中最后分析和讨论了两次历史大地震发震断层的立体模型.   相似文献   

14.
Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that recurrences of strong earthquakes in the 7 fault zones display near-random, random and clustering behaviors. The recurrence processes are never quasiperiodic, and are neither strength-time nor time-strength dependent. The more independent segments for strong earthquake rupturing a fault zone has, the more complicated the corresponding recurrence process is. And relatively active periods and quiescent periods for earthquake activity occur alternatively. Within the active periods, the distribution of recurrence time intervals between earthquakes has relatively large discretion, and can be modelled well by a Weibull distribution. The time distribution of the quiescent periods has relatively small discretion, and can be approximately described by some distributions as the normal. Both the durations of the active periods and the numbers of strong earthquakes within the active periods vary obviously cycle by cycle, leading to the relatively active periods having never repeated quasi-periodically. Therefore, the probabilistic assessment for middle- and longterm seismic hazard for entireties of active fault zones based on data of historical strong earthquakes on the fault zones still faces difficulty.  相似文献   

15.
大凉山断裂带是大型走滑断裂鲜水河-小江断裂系的重要组成部分,其活动性是认识和探讨青藏高原东南缘现今地震活动和构造变形机制的重要基础资料。相较于中段和南段,关于大凉山断裂带北段活动性的相关研究成果,尤其是古地震资料非常缺乏。文中基于野外地质地貌调查,在石棉断裂联合村处开挖了一组(2个)探槽,揭露出断裂全新世活动的直接证据。通过古地震分析和炭样加速器质谱仪(AMS)测年,共获得了4次古地震事件:事件E1:20925—16850BC;事件E2:15265—1785BC;事件E3:360—1475AD;事件E4:1655—1815AD。其中包括全新世以来的3次事件,最新2次事件的复发间隔骤然缩短,反映断裂活动可能正在加剧。  相似文献   

16.
东昆仑活动断裂带及其强震活动   总被引:17,自引:0,他引:17  
刘光勋 《中国地震》1996,12(2):119-126
本文在简述东昆仑活动断裂带的构造背景与演化历史的基础上,重点叙述了该活动断裂带的展布,几何结构,第四纪运动和强震活动等特征,指出,这是一条具有长期演化历史,深部构造背景和第四纪乃至全新强烈活动的断裂带。因而在我国大地构造演化,尤其在青藏高原隆起形成,占有重要地位,同时,它还是我国西部地区一条主要的强震活动构造带,根据现代强震活动记录和在全带新发现的多期全新世古地震及其地表破裂带,分析了大震在断裂带  相似文献   

17.
鲜水河断裂带是四川西部一条晚第四纪强烈左旋走滑活动的构造带,历史上发生多次强震. 它与西北侧的甘孜—玉树断裂带一起,构成青藏高原东部的侧向滑移构造系统中的川滇活动地块的北边界——羌塘地块的东北边界. 鲜水河断裂带北西段可以分成4个段落,每一段落均可作为一个独立的基本破裂单元而发生地震破裂,亦有可能发生不同尺度的多段联合瞧裂. 对鲜水河断裂带北西段不同尺度破裂的震级及复发间隔进行研究. 根据该地区的地质、地球物理、测量及地震等方面的资料,结合我国强震复发的特点,分析了拉分盆地内部的滑动速率分布,以确定各段落的等效长度和倾向宽度,从而建立适合我国大陆走滑断裂的面波震级与断裂发震面积的关系式;进而运用地震矩方法,考虑断层之间的相互作用,结合专家意见建立了该段的矩平衡断裂破裂模型;最后,给出了鲜水河断裂带北西段各破裂源特征化地震的复发间隔、震级大小和不确定性,以及他与中小地震的联合震级分布. 结果表明,鲜水河断裂带北西段较易发生单段破裂,复发间隔在100~150年左右.  相似文献   

18.
Nine earthquakes with M≥6 have stricken the northern segment of the Red River fault zone since the historical records, including the 1652 Midu M7 earthquake and the 1925 Dali M7 earthquake. However, there have been no earthquake records of M≥6 on the middle and southern segments of the Red River Fault, since 886 AD. Is the Red River fault zone, as a boundary fault, a fault zone where there will be not big earthquake in the future or a seismogenic structure for large earthquake with long recurrence intervals?This problem puzzles the geologists for a long time. Through indoor careful interpretation of high resolution remote sensing images, and in combination with detailed field geological and geomorphic survey, we found a series of fault troughs along the section of Gasha-Yaojie on the southern segment of the Red River fault zone, the length of the Gasha-Yaojie section is over ten kilometers. At the same time, paleoseismic information and radiocarbon dating result analysis on the multiple trenches show that there exists geological evidence of seismic activity during the Holocene in the southern segment of the Red River fault zone.  相似文献   

19.
Earthquake hazard in Marmara Region, Turkey   总被引:2,自引:0,他引:2  
Earthquake hazard in the Marmara Region, Turkey has been investigated using time-independent probabilistic (simple Poissonian) and time-dependent probabilistic (renewal) models. The study culminated in hazard maps of the Marmara Region depicting peak ground acceleration (PGA) and spectral accelerations (SA)'s at 0.2 and 1 s periods corresponding to 10 and 2% probabilities of exceedance in 50 yrs. The historical seismicity, the tectonic models and the known slip rates along the faults constitute the main data used in the assignment. Based on recent findings it has been possible to provide a fault segmentation model for the Marmara Sea. For the main Marmara Fault this model essentially identifies fault segments for different structural, tectonic and geometrical features and historical earthquake occurrences. The damage distribution and pattern of the historical earthquakes have been carefully correlated with this fault segmentation model. The inter-event time period between characteristic earthquakes in these segments is consistently estimated by dividing the seismic slip estimated from the earthquake catalog by the GPS-derived slip rate of 22±3 mm/yr. The remaining segments in the eastern and southern Marmara region are also identified using recent geological, geophysical studies and historical earthquakes. The model assumes that seismic energy along the segments is released by characteristic earthquakes. For the probabilistic studies characteristic earthquake based recurrence relationships are used. Assuming normal distribution of inter-arrival times of characteristic earthquakes, the ‘mean recurrence time’, ‘covariance’ and the ‘time since last earthquake’ are developed for each segment. For the renewal model, the conditional probability for each fault segment is calculated from the mean recurrence interval of the characteristic earthquake, the elapsed time since the last major earthquake and the exposure period. The probabilities are conditional since they change as a function of the time elapsed since the last earthquake. For the background earthquake activity, a spatially smoothed seismicity is determined for each cell of a grid composed of cells of size 0.005°×0.005°. The ground motions are determined for soft rock (NEHRP B/C boundary) conditions. Western US-based attenuation relationships are utilized, since they show a good correlation with the attenuation characteristics of ground motion in the Marmara region. The possibility, that an event ruptures several fault segments (i.e. cascading), is also taken into account and investigated by two possible models of cascading. Differences between Poissonian and renewal models, and also the effect of cascading have been discussed with the help of PGA ratio maps.  相似文献   

20.
闻学泽 《地震地质》2000,22(3):239-249
依据多种资料分层次剖析了川西鲜水河 -安宁河 -则木河断裂带的地震破裂分段性及其原因 ,并将该断裂带划分为 12个特征地震破裂段。断裂带上持久性和非持久性的破裂边界各占约 ;持久性及重要的破裂边界可依据断裂几何结构及活动习性标志进行判定 ,它们均以局部体积变化的方式来终止破裂的扩展 ;非持久性的破裂边界则可依据地震破裂与复发行为、断裂现今活动习性空间差异、松驰障碍体与较小尺度几何障碍的复合体等进行判定 ,其位置可随时间变化。地震破裂时间间隔短的 ,相邻破裂的重叠量较小 ;时间间隔长的 ,相邻破裂的重叠量则较  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号