首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
气候变化背景下青藏铁路沿线多年冻土变化特征研究   总被引:1,自引:0,他引:1  
多年冻土是复杂地气系统的产物, 以升温为特征的气候变化不可避免地对其产生影响. 基于青藏铁路沿线8个天然场地2006-2011年的地温监测资料, 分析了气候变化背景下, 多年冻土升温特征及上限变化规律, 并对低、高温冻土的变化特征进行了对比分析. 结果表明: 2006-2011年监测期间, 铁路沿线多年冻土正在经历明显的升温趋势, 上限附近和15 m深处平均升温率分别为0.015 ℃·a-1和0.018 ℃·a-1, 其中, 低温冻土区在上述两个深度处升温均比高温冻土区显著; 多年冻土上限深度也表现出一定的增深趋势, 平均增深速率为4.7 cm·a-1, 其中, 高温冻土区增深速率大于低温冻土区. 低、高温冻土对气候变化的响应表现出了较大差异. 同时, 受局地因素的影响, 不同区域在升温和上限增深上也存在一定差异.  相似文献   

2.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   

3.
对于冻土工程而言, 基础热稳定性是决定工程稳定性及服役性能的关键. 为预测±400 kV青藏直流联网工程多年冻土区砼灌注桩基础的长期热稳定性, 建立了考虑相变问题的二维数值传热分析模型, 应用有限元方法研究了气候变暖背景下, 不同年平均地温、不同含冰量条件下灌注桩基础传热特性和长期热稳定性. 结果表明: 单桩对周围土体的热影响范围是桩径的4~5倍, 桩基周围融化深度随时间推移而增大, 在低含冰量的高温和低温冻土区桩基50 a后最大融化深度分别为6.65 m和3.05 m, 所对应的冻土上限平均融化速率分别为9.5 cm·a-1和3.6 cm·a-1;在高含冰量的高温和低温冻土区50 a后最大融化深度分别为5.25 m和2.77 m, 其冻土上限平均融化速率分别为6.7 cm·a-1和2.0 cm·a-1. 在气候变暖背景下, 桩基上部周围冻土逐渐升温、融化, 50 a后, 在低含冰量的高温冻土区桩基由于融化深度增大导致有效冻结长度减少28%, 在高含冰量的高温冻土区桩基的有效冻结长度减少15%, 桩侧冻结力随之相应减小. 该研究对于冻土区桩基长度设计、桩基工程的维护和冻土稳定性评价提供了重要的科学依据.  相似文献   

4.
青藏公路下伏多年冻土的融化分析   总被引:14,自引:6,他引:8  
基于青藏公路沿线高温冻土区和低温冻土区2组地温观测孔5 a的地温观测资料, 研究了路基下伏多年冻土的融化状态, 定量分析了进入路基下多年冻土内的热状况. 结果表明: 路基近地表地温明显高于对应天然地表下的地温, 路基近地表经历的融化期长于对应天然地表, 高温冻土区路基内已形成贯穿融化夹层;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态, 进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因. 低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主, 随着地温的增高, 低温冻土区也可能发生强烈的冻土融化.  相似文献   

5.
王青志  房建宏  晁刚 《岩土力学》2020,41(1):305-314
基于长期、连续的地温观测数据,对位于共和至玉树高等级公路沿线、平均海拔为4 260 m且处于高温冻土区的片块石路基温度、热状态、冻融循环过程和冻土人为上限及变化速率等进行了分析,研究了沥青混凝土和水泥混凝土路面对片块石路基下伏多年冻土的影响,以期对其适用性进行评价。研究发现,沥青混凝土路面的铺设使路基吸收了较多的热量,促使下伏多年冻土升温,导致多年冻土快速退化。观测期内,高温冻土地区沥青混凝土路面下片块石路基中心冻土退化速率为33.5 cm/a,几乎是天然地基的5倍。而且路基阴阳坡效应严重,阳坡路肩冻土退化速率为33.0 cm/a,明显大于阴坡路肩 (22.0 cm/a)。与沥青混凝土路面相比,水泥混凝土路面较高的热反射率、较小的热辐射吸收率,有利于抬升冻土上限或减缓冻土退化速率。但在观测期间,发现处于高温冻土区的高等级公路片块石路基在沥青混凝土路面下融化盘面积增长速率为12.24 m2/a,而在水泥混凝土路面下为9.28 m2/a,即融化盘面积以不同程度的速率始终在增大。因此,单纯的片块石层的存在和路面类型的改变,并未彻底解决高温冻土区高等级公路路基热平衡问题,建议增加补强措施或采用复合路基结构来应对其热稳定性问题。  相似文献   

6.
青藏铁路多年冻土区普通路基热状况监测分析   总被引:1,自引:1,他引:0  
基于现场地温监测数据,选取年平均地温不同的监测断面对青藏铁路普通路基的热状况进行分析,包括多年冻土上限变化及其地温变化、下伏多年冻土温度变化、原天然地表附近热收支等方面. 结果表明:在低温多年冻土区,路基下部多年冻土上限均有所提升,且新近形成的人为上限较为稳定,冷季时负温积累显著;路基下伏多年冻土总体热稳定性较好. 而在高温多年冻土区,左(阳坡)路肩下部多年冻土上限多表现为下降,右(阴坡)路肩下部多年冻土上限有升有降,但是新近形成的上限均温度较高且有进一步升温的趋势;与天然场地地温相比,路基下部多年冻土均出现一定的升温. 尤其在高温极不稳定多年冻土区,天然场地多年冻土自身处于吸热升温状态;路基修筑后,下部多年冻土已经出现了融化夹层及双向退化的情况,路基热稳定性较差. 对于普通路基来说,由于青藏高原强烈的太阳辐射及青藏铁路总体走向原因,普通阴阳坡效应显著,左、右路肩下部多年冻土热稳定性差异较大.  相似文献   

7.
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素.  相似文献   

8.
影响多年冻土上限变化的因素探讨   总被引:6,自引:6,他引:0  
王银学  赵林  李韧  吴通华  乔永平 《冰川冻土》2011,33(5):1064-1067
利用地温及活动层水热观测资料,分析青藏公路沿线近年来影响多年冻土上限的变化因素.研究结果显示,青藏公路沿线冻土上限总体呈现下降趋势,冻土上限的变化与近年来区域气候变化的趋势一致;近年来多年冻土上限下降0.1~0.5 m,所处的地理位置不同,冻土上限下降的幅度也不同.气温变化是影响冻土上限的一个重要的外部因素,上限变化的...  相似文献   

9.
青藏公路沿线多年冻土对气候变化和工程影响的响应分析   总被引:10,自引:5,他引:5  
青藏公路沿线工程和气候变化影响下多年冻土变化监测表明,多年冻土对工程活动和气候变化的响应过程存在着较大差异,不同年平均地温的多年冻土使这种差异变得更为明显.分析结果表明:气候变化下低温多年冻土变化要大于高温多年冻土,工程状态下低温多年冻土变化要小于高温多年冻土;气候变化引起的低温多年冻土变化要大于工程对其的影响,而高温多年冻土正好相反.造成这一结果原因主要是由于在工程建设完成初期,相对于气候影响,工程作用对多年冻土的影响具有放大作用,这使得工程状态下多年冻土对气候变化基本没有响应.按照气候影响下多年冻土温度年变化速率来推测,低温多年冻土表面温度升温到工程状态需要50a左右时间,高温多年冻土需要20a左右.6m深的低温多年冻土温度升温到工程状态需要20a,高温多年冻土仅需要5~8a.  相似文献   

10.
祁连山大通河源区冻土特征及变化趋势   总被引:7,自引:4,他引:3  
大通河源区位于祁连山中东部, 属高山多年冻土区, 利用源区内冻土钻探及监测资料对源区冻土发育的基本特征及变化趋势进行了分析和探讨. 冻土地温分析表明, 源区冻土年平均地温随海拔的变化梯度约为3.82 ℃·km-1, 且冻土地温与表层覆被条件关系密切. 盆地平原地带多年冻土厚度约为17~86 m, 且以海拔每上升100 m冻土厚度增加约10 m的梯度增加. 多年冻土活动层厚度受海拔地带性作用不显著, 更多地受局地因素的控制, 地表覆被条件成为其主要影响因素. 在气温升高以及人类活动日益增多的影响下, 源区冻土整体处于退化状态, 多年冻土年平均地温以0.0075 ℃·a-1的速率上升.  相似文献   

11.
研究冻土地温空间分布,有助于探索冻土活动层厚度的变化特征,为冻土灾害防治提供科学依据。以青藏铁路昆仑山至尺曲谷地段多年冻土覆盖区域为研究区域,采用地理加权岭回归克里金(GWRRK)方法对该区域2001年7月至9月的地温空间分布进行了模拟,揭示了该区域多年冻土融化深度的变化特征。结果表明:研究区域内多年冻土地温总体表现为山区地温低于平原和盆地地区地温;地温随深度的增加而降低,在0~5 m的深度区间内温度变化较大,平均温差为10.3 ℃,而在5~15 m的深度区间内基本保持不变,平均温差仅0.2 ℃。通过将GWRRK方法与具有外部漂移克里金(KED)方法和地理加权岭回归(GWRR)方法的模拟效果进行对比,发现前者的模拟精度优于后两种方法。  相似文献   

12.
边界条件对多年冻土路基热稳定性的影响分析   总被引:1,自引:0,他引:1  
易鑫  喻文兵  陈琳  刘伟博 《冰川冻土》2014,36(2):369-375
多年冻土区的年平均气温是影响冻土路基边界条件的重要因素. 在附面层原理的基础上,考虑采用带有相变的控制方程和数值方法,以相同尺度的路基模型为前提,选取不同的年平均气温为影响因素,对青藏工程走廊公路路基的人为冻土上限和年平均地温进行了研究. 结果表明:公路路基下年平均地温随着年平均气温的升高而升高,人为冻土上限随着年平均气温的升高而显著下降. 在年平均气温为-7.16 ℃时,路基修筑50 a后其年平均地温为-3.61 ℃,其人为冻土上限为-0.97 m;年平均气温为-3.21 ℃的条件下,路基修筑50 a后其年平均地温仅为-0.1 ℃,其人为冻土上限也降至-13.11 m. 因此,可以看出:在未来气候持续变暖的背景下,现有处于稳定状态的冻土路基将逐渐变得不稳定.  相似文献   

13.
青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究   总被引:9,自引:9,他引:0  
罗京  牛富俊  林战举  鲁嘉濠 《冰川冻土》2012,34(5):1110-1117
青藏高原多年冻土区广泛分布着热融湖塘, 热融湖塘的形成会对周边的多年冻土产生显著的影响. 选取北麓河地区一典型热融湖, 运用探地雷达技术对该湖塘周边的多年冻土进行了探测.结果表明: 湖岸坍塌剧烈区一侧的多年冻土上限深度大于湖岸轻微坍塌区和湖岸稳定区, 并且在湖水的热作用下, 湖岸多年冻土的上限深度随离湖岸距离的减小而增大; 湖岸坍塌剧烈区上限附近的地下冰含量也明显高于湖岸轻微坍塌区和湖岸稳定区. 同时, 通过对湖岸测温孔的地温观测数据的分析可以看出, 湖岸地温正在逐年升高且升高的速率快于天然状态, 湖岸地温随离湖岸距离的减小逐渐增大.  相似文献   

14.
青藏铁路沿线多年冻土区地温场变化规律   总被引:19,自引:6,他引:13  
青藏铁路通过约550km的多年冻土区,统计和分析青藏高原多年冻土分布区主要气象台站的资料可以看出,近30a来高原多年冻土区的气候变化总的趋势是向着气温升高的方向发展的,气温的变化对多年冻土热状态的扰动主要表现在地温场的变化上.30多年来高原气温升高0.45℃左右,并引起冻土地温平均升高了0.2~0.3℃.分析青藏铁路通过的多年冻土地区典型地段测温孔资料,发现多年来气候转暖已经使冻土上部(20m以上)地温明显升高,影响深度已经波及到了40m.  相似文献   

15.
块石路基是多年冻土区应用最为广泛的多年冻土路基形式. 为了研究多年冻土区修筑高速公路后块石路基的效果,选取青海省新建共和-玉树高速公路3个块石路基监测断面的实测资料,对路基修筑初期多年冻土温度状况进行了分析. 结果表明:路基修筑初期路基中心原天然地表下0.5 m处仍表现出季节变化规律,至原多年冻土上限深度处,温度波动幅度急剧减小. 块石路基的保温效果与年平均地温密切相关,年平均地温越低,对冻土的保护效果越显著. 受阴阳坡效应的影响,左路肩/坡脚温度高于右路肩/坡脚. 左右路肩及中心孔下多年冻土上限都得到不同程度的抬升,抬升幅度主要受路基高度影响,与多年冻土年平均地温没有必然关系.  相似文献   

16.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

17.
青藏高原改则地区多年冻土特征   总被引:2,自引:1,他引:1  
改则地区地处青藏高原腹地, 气候寒冷干燥, 位于青藏高原大片连续多年冻土南界附近. 2010年"青藏高原多年冻土本底调查"项目在改则地区采用坑探、物探和钻探等多种方法对区域内多年冻土开展了大规模野外考察工作. 根据现场钻探资料和后来的地温观测资料, 并结合坑探和物探资料对改则地区多年冻土特征进行分析, 结果显示: 改则地区多年冻土上限深度在2.6~8.5 m之间, 部分地区存在融化夹层; 多年冻土含冰量在12%~35%之间, 主要为多冰冻土, 而且一般仅在上限附近发育有高含冰量多年冻土; 多年冻土温度普遍较高, 在-1.5~0℃之间; 多年下限深度一般小于60 m, 部分地区甚至在10 m左右; 多年冻土分布的下界海拔高度约为4 700 m, 海拔5 100 m以上区域普遍发育有多年冻土; 区域内多年冻土特征受局地因素影响明显, 特别是与坡向、植被覆盖、岩性和含水量等关系密切; 现场记录资料和后来的测温资料都显示改则地区部分多年冻土正处于退化状态.  相似文献   

18.
青藏铁路路基创造性采用了主动冷却路基的设计理念修建而成,目前铁路已经安全运营超过10年。青藏铁路路基修筑在多年冻土之上,路基下部冻土温度变化是衡量路基是否稳定的关键因素。基于长期(2008—2019年)地温观测资料,对昆仑山垭口南坡青藏铁路K980+000低温多年冻土区块石路基坡脚至坡脚外30 m范围内的冻土上限变化、年际地温变化、季节性地温变化进行分析,研究了路基工程行为对低温多年冻土的长期影响机制。结果表明:冻土地温不断升高,冻土上限逐年下移;与天然孔比较,路基坡脚处地温增温幅度反而较小,主要可能受块石路基冷却效应的影响;冷季与暖季呈现出不对称的增温趋势。冻土路基普遍增温的趋势仍然存在,出于对多年冻土的保护与保证工程稳定性的考虑,应尽量采用冷却路基的思想修建路基。同时,应加强对路基的监测,分析长期增温过程后路基稳定性变化,并对路基下部冻土的变化做出定量研究。  相似文献   

19.
依据祁连山和青藏高原气温、地温、冻土厚度与经纬度以及海拔的经验公式, 通过ArcGIS空间分析, 获得了祁连山地区年均气温、年均地温和冻土厚度的空间分布规律。祁连山多年冻土区年均气温和年均地温分别为-12~-6 ℃和-4~-2 ℃, 多年冻土厚度变化于90~140 m之间。其中, 哈拉湖地区海拔4300 m以上的高山区温度最低、冻土最厚, 年均气温和年均地温分别低于-10 ℃和-4 ℃, 多年冻土厚度大于140 m。结合祁连山烃源岩区域分布特征和木里天然气水合物钻孔的冻土厚度资料, 认为中祁连盆-山构造地貌发育区为天然气水合物成藏最有利区域。   相似文献   

20.
在全球气候变暖、青藏高原平均气温升高的大背景下,多年冻土区热融湖的发育及其对冻土热状况的影响日益显著.以北麓河地区的一典型热融湖为例,通过对湖岸坍塌及年地温变化等进行监测分析.结果表明:目前该热融湖湖岸逐年坍塌,坍塌主要发生在靠近铁路一侧厚层地下冰发育区域,年平均坍塌宽度大约为0.5m,湖心下原约83.0m多年冻土已全部融化.根据210Pb测年,估算该热融湖形成于约890aBP前.在热融湖的影响下,湖心至路基坡脚天然孔之间多年冻土上限深度及多年冻土厚度均发生了很大变化,湖近岸多年冻土上限深度比路基坡脚天然孔多年冻土上限深约0.65m,湖边多年冻土厚度也比路基坡脚天然孔多年冻土厚度薄约60m;湖心至路基坡脚天然孔之间土层在水平方向形成明显的地温差异,在相同深度,湖心下土层地温年平均值比天然孔地温年平均值高5.0℃左右.热融湖作为热量的载体,以二维热传导方式将热量向其周围传递,导致附近多年冻土温度升高,热稳定性降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号