首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test particles from five source regions that we believe provide most NEOs to the inner Solar System. Four of these source regions are in or adjacent to the main asteroid belt, while the fifth one is associated with the transneptunian disk. The nearly isotropic comets, which include the Halley-type comets and the long-period comets, were not included in our model. Test bodies from our source regions that passed into the NEO region (perihelia q<1.3 AU and aphelia Q≥0.983 AU) were tracked until they were eliminated by striking the Sun or a planet or were ejected out of the inner Solar System. These integrations were used to create five residence time probability distributions in semimajor axis, eccentricity, and inclination space (one for each source). These distributions show where NEOs from a given source are statistically most likely to be located. Combining these five residence time probability distributions with an NEO absolute magnitude distribution computed from previous work and a probability function representing the observational biases associated with the Spacewatch NEO survey, we produced an NEO model population that could be fit to 138 NEOs discovered or accidentally rediscovered by Spacewatch. By testing a range of possible source combinations, a best-fit NEO model was computed which (i) provided the debiased orbital and absolute magnitude distributions for the NEO population and (ii) indicated the relative importance of each NEO source region.Our best-fit model is consistent with 960±120 NEOs having H<18 and a<7.4 AU. Approximately 44% (as of December 2000) have been found so far. The limits on this estimate are conditional, since our model does not include nearly isotropic comets. Nearly isotropic comets are generally restricted to a Tisserand parameter (with respect to Jupiter) of T<2, such that few are believed to have a<7.4 AU. Our computed NEO orbital distribution, which is valid for bodies as faint as H<22, indicates that the Amor, Apollo, and Aten populations contain 32±1%, 62±1%, and 6±1% of the NEO population, respectively. We estimate that the population of objects completely inside Earth's orbit (IEOs) arising from our source regions is 2% the size of the NEO population. This value does not include the putative Vulcanoid population located inside Mercury's orbit. Overall, our model predicts that ∼61% of the NEO population comes from the inner main belt (a<2.5 AU), ∼24% comes from the central main belt (2.5<a<2.8 AU), ∼8% comes from the outer main belt (a>2.8 AU), and ∼6% comes from the Jupiter-family comet region (2<T?3). The steady-state population in each NEO source region, as well as the influx rates needed to replenish each region, were calculated as a by-product of our method. The population of extinct comets in the Jupiter-family comet region was also computed.  相似文献   

2.
C.L Dandy  A Fitzsimmons 《Icarus》2003,163(2):363-373
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1-μm pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of ∼2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q-, R-, and V-type NEOs tend to have orbits associated with “fast track” delivery from the main belt, whereas S-type NEOs tend to have orbits associated with “slow track” delivery. This outcome would be expected if space weathering occurs on time scales of >106 years.  相似文献   

3.
Comets in the near-Earth object population   总被引:1,自引:0,他引:1  
Francesca DeMeo 《Icarus》2008,194(2):436-449
Because the lifespan of near-Earth objects (NEOs) is shorter than the age of the Solar System, these objects originate elsewhere. Their most likely sources are the main asteroid belt and comets. Through physical observations we seek to identify potential dormant or extinct comets among “asteroids” catalogued as NEOs and thereby determine the fraction of “comet candidates” within the total NEO population. Both discovery statistics and dynamical models indicate that candidate cometary objects in near-Earth space are predominantly found among those having a jovian Tisserand parameter Tj<3. Therefore, we seek to identify comet candidates among asteroid-like NEOs using three criteria: Tj<3, spectral parameters (C, D, T, or P taxonomic types), and/or low (<0.075) albedos. We present new observations for 20 NEOs having Tj<3, consisting of visible spectra, near-infrared spectra, and/or albedo measurements obtained using the NASA Infrared Telescope Facility, the Kitt Peak National Observatory 4 m, and the Magellan Observatory 6.5-m. Four of our “asteroid” targets have been subsequently confirmed as low activity comets. Thus our sample includes spectra of the nuclei of Comets 2002 EX12 = 169P (NEAT), 2001 WF2 = 182P (LONEOS), 2003 WY25 = D/1891 W1 (Blanplain), and Halley Family Comet 2006 HR30 = P/2006 HR30 (Siding Spring). From the available literature, we tabulate physical properties for 55 NEOs having Tj<3, and after accounting for possible bias effects, we estimate that 54±10% of NEOs in Tj<3 orbits have “comet-like” spectra or albedos. Bias corrected discovery statistics [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311] estimate 30±5% of the entire NEO population resides in orbits having Tj<3. Combining these two factors suggests that 16±5% of the total discovered “asteroid-like” NEO population has “comet-like” dynamical and physical properties. Outer main-belt asteroids typically have similar taxonomic and albedo properties as our “comet candidates.” Using the model of Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] to evaluate source region probabilities, we conclude that 8±5% of the total asteroid-like NEO population have the requisite orbital properties, physical properties, and dynamical likelihood to have originated as comets from the outer Solar System.  相似文献   

4.
Utilizing the largest available data sets for the observed taxonomic (Binzel et al., 2004, Icarus 170, 259-294) and albedo (Delbo et al., 2003, Icarus 166, 116-130) distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ∼30% of the NEO population has jovian Tisserand parameter less than 3, where the D-types and X-types dominate. The large contribution from the X-types is surprising and highlights the need to better understand this group with more albedo measurements. Combining the C, D, and X complexes into a “dark” group and the others into a “bright” group yields a debiased dark-to-bright ratio of ∼1.6. Overall, the bias-corrected mean albedo for the NEO population is 0.14±0.02, for which an H magnitude of 17.8±0.1 translates to a diameter of 1 km, in close agreement with Morbidelli et al. (2002, Icarus 158 (2), 329-342). Coupling this bias corrected taxonomic and albedo model with the H magnitude dependent size distribution of (Stuart, 2001, Science 294, 1691-1693) yields a diameter distribution with 1090±180 NEOs with diameters larger than 1 km. As of 2004 June, the Spaceguard Survey has discovered 56% of the NEOs larger than 1 km. Using our size distribution model, and orbital distribution of (Stuart, 2001, Science 294, 1691-1693) we calculate the frequency of impacts into the Earth and the Moon. Globally destructive collisions (∼1021 J) of asteroids 1 km or larger strike the Earth once every 0.60±0.1 Myr on average. Regionally destructive collisions with impact energy greater than 4×1018 J (∼200 m diameter) strike the Earth every 56,000±6000 yr. Collisions in the range of the Tunguska event (4-8×1016 J) occur every 2000-3000 yr. These values represent the average time between randomly spaced impacts; actual impacts could occur more or less closely spaced solely by chance. As a verification of these impact rates, the crater production function of Shoemaker et al. (1990, Geological Society of American Special Paper 247) has been updated by combining this new population model with a crater formation model to find that the observed crater production function on both the Earth and Moon agrees with the rate of crater production expected from the current population of NEOs.  相似文献   

5.
We present a new Near Earth Object (NEO) survey simulator which incorporates the four-dimensional population model of 4668 NEOs [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and the observing strategies of most asteroid search programs. With the recent expansion of survey capabilities, previous simulators focused on a specific survey facility are no longer useful in predicting the future detection rates. Our simulation is a superposition of simplified search patterns adopted by all major wide-field surveys in operation in both hemispheres. We defined five different simulation periods to follow the evolution of survey efficiencies reflecting changes in either search volume as a result of upgrades of telescopes and instruments or in observing schedules. The simulator makes remarkably good reproductions of actual survey results as of December 2005, not only the total number of detections but also (a,e,i,H) (‘H’ means absolute magnitude of an asteroid) distributions. An extended experiment provides excellent predictions for discovery statistics of NEOs (H<18) reported to the Minor Planet Center in 2006. These support that our simulator is a plausible approximation of real surveys. We further confirm that, with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] population model and present survey capability, the 90% completeness level of kilometer-sized NEOs will be achieved by 2010 or 2011. However, about 8% of the kilometer-sized or larger NEOs would remain undetected even after 10-year operation (2007-2016) of all current NEO survey facilities. They are apparently faint, with orbits characterized by large semimajor axis and higher eccentricity; these “hardest-to-find” objects tend to elude the search volume of existing NEO survey facilities. Our simulation suggests that 15% of undetectable objects are Atens and Inner Earth Objects. Because of their orbital characteristics, they will remain within ±45° from the Sun, thus cannot be discovered in the forthcoming decade if our effort is limited to current ground-based telescopes.  相似文献   

6.
We investigate the relevance of the Yarkovsky effect for the origin of kilometer and multikilometer near-Earth asteroids (NEAs). The Yarkovsky effect causes a slow migration in semimajor axis of main belt asteroids, some of which are therefore captured into powerful resonances and transported to the NEA space. With an innovative simulation scheme, we determine that in the current steady-state situation 100-160 bodies with H < 18 (roughly larger than 1 km) enter the 3/1 resonance per million years and 40-60 enter the ν6 resonance. The ranges are due to uncertainties on relevant simulation parameters such as the time scales for collisional disruption and reorientation, their size dependence, and the strength of the Yarkovsky and YORP effects. These flux rates to the resonances are consistent with those independently derived by Bottke et al. (2002, Icarus 156, 399-433) with considerations based only on the NEA orbital distribution and dynamical lifetime. Our results have been obtained assuming that the main belt contains 1,300,000 asteroids with H < 18 and linearly scale with this number. Assuming that the cumulative magnitude distribution of main belt asteroids is N(< H) ∝ 10γ′H with γ′ = 0.25 in the 15.5 < H < 18 range (consistent with the results of the SDSS survey), we obtain that the bodies captured into the resonances should have a similar magnitude distribution, but with exponent coefficient γ = 0.33-0.40. The lowest value is obtained taking into account the YORP effect, while higher values correspond to a weakened YORP or to YORP-less cases. These values of γ are all compatible with the debiased magnitude distributions of the NEAs according to Rabinowitz et al. (2000, Nature 403, 165-166), Bottke et al. (2000b, Science 288, 2190-2194), and Stuart (2001, Science 294, 1691-1693). Hence the Yarkovsky and YORP effects allow us to understand why the magnitude distribution of NEAs is only moderately steeper than that of the main belt population. The steepest main belt distribution that would still be compatible with the NEA distribution has exponent coefficient γ′ ∼ 0.3.  相似文献   

7.
We have used an improved model of the orbit and absolute magnitude distribution of Near Earth Objects (NEOs) to simulate the performance of asteroid surveys. Our results support general conclusions of previous studies using preliminary Near Earth Asteroid (NEA) orbit and magnitude distributions and suggest that meeting the Spaceguard Goal of 90% completion for Near Earth Objects (NEOs) greater than 1 km diameter by 2008 is impossible given contemporary surveying capabilities.The NEO model was derived from NEO detections by the Spacewatch Project. For this paper we developed a simulator for the Catalina Sky Survey (CSS) for which we had a complete pointing history and NEO detection efficiency. The good match between the output of the simulator and the actual CSS performance gives confidence that both the NEO model and simulator are correct. Then, in order to determine if existing surveys can meet the Spaceguard Goal, we developed a simulator to mimic the LINEAR survey, for which detailed performance characteristics were unavailable. This simulator serendipitously provided an estimate for the currently undiscovered population of NEOs upon which we base all our estimates of time to 90% completion. We also developed a set of idealized NEO surveys in order to constrain the best possible survey performance in contrast to more realistic systems.A 100% efficient, all-sky, every night survey, subject only to the constraints of detection above a specified air mass and when the Sun is 18° below the horizon provides a benchmark from which to examine the effect of imposing more restrictions and the efficacy of some simple survey strategies. Such a survey must have a limiting V-magnitude of 20.1 ± 0.2 to meet the Spaceguard Goal.More realistic surveys, limited by latitude, the galaxy, minimum rates of NEO motion, etc., require fainter limiting magnitudes to reach the same completion. Our most realistic simulations, which have been normalized to the performance of the LINEAR detector system’s operation in the period 1999-2000, indicate that it would take them another 33 ± 5 years to reach 90% completeness for the larger asteroids (?1 km diameter). They would need to immediately increase the limiting magnitude to about 24 in order to meet the Spaceguard Goal.The simulations suggest that there may be little need for distributing survey telescopes in longitude and latitude as long as there is sufficient sky coverage from a telescope or network of telescopes which may be geographically close. An idealized space-based survey, especially from a satellite orbit much interior to Earth, would offer an advantage over their terrestrial counterparts. We do not consider a cost-benefit analysis for any of the simulations but suspect that a local-area network of telescopes capable of covering much of the sky in a month to V ∼ 21.5 may be administratively, financially, and scientifically the best compromise for reaching 90% completion of NEOs larger than 1 km diameter.  相似文献   

8.
We study the population of faint Jupiter family comets (JFCs) that approach the Earth (perihelion distances q<1.3 AU) by applying a debiasing technique to the observed sample. We found for the debiased cumulative luminosity function (CLF) of absolute total magnitudes H10 a bimodal distribution in which brighter comets (H10?9) follow a linear relation with a steep slope α=0.65±0.14, while fainter comets follow a much shallower slope α=0.25±0.06 down to H10∼18. The slope can be pushed up to α=0.35±0.09 if a second break in the H10 distribution to a much shallower slope is introduced at H10∼16. We estimate a population of about 103 faint JFCs with q<1.3 AU and 10<H10<15 (radii ∼0.1-0.5 km). The shallowness of the CLF for faint near-Earth JFCs may be explained either as: (i) the source population (the scattered disk) has an equally very shallow distribution in the considered size range, or (ii) the distribution is flattened by the disintegration of small objects before that they have a chance of being observed. The fact that the slope of the magnitude distribution of the faint active JFCs is very similar to that found for a sample of dormant JFCs candidates suggests that for a surviving (i.e., not disintegrated) object, the probability of becoming dormant versus keeping some activity is roughly size independent.  相似文献   

9.
D.J. Scheeres  A. Rossi 《Icarus》2004,170(2):312-323
In this paper we study the statistical effect of planetary flybys on the rotation rates and states of Near Earth Objects (NEOs). Our approach combines numerical and analytical methods within a Monte Carlo model that simulates the evolution of the NEO spin rates. We take as input for the simulation a source distribution of spin states and evolve it to find their steady state distribution. In performing this evolution we track the changes in the spin rate and state distribution for the different components of the NEO population. We show that the cumulative effect of planetary encounters is to spin up the overall population of NEOs. This spin up effect holds on average only, and particular members of the population may experience an overall decrease in rotation rate. This effect is clearly seen across all components of the NEO population and is significant both statistically and physically. For initially slow rotators the spin up effect is strong, lowering the mean rotation period by 32%. For faster rotating populations the effect is less, lowering the spin period by 15% for the intermediate case, 6% for fast rotating rubble piles, and 8% for fast rotating monoliths. Physically, the spin up effect pushes 1% of the fast rotating rubble-pile NEOs over the disruption limit, while 6% of these bodies experience a sub-disruption event that could modify their physical structure. For monolithic NEOs, the spin up effect is self-limiting, reaching a minimum spin period of 1.1 hr, with a strong cut-off between 2-3 hr. This has two implications. First, it may not be necessary to invoke the rubble-pile hypothesis to recover a cut-off in spin period. Second, it shows that planetary flybys cannot account for the extremely rapid rotation rates of some small NEOs. We also tested a different balance between the effects of Earth and Venus by treating the Aten sub-class of asteroids separately. Due to increased interactions with the planets, the spin up effect is more pronounced (10%) and disruptions increase by a factor of three. The slow rotation tails of the spin distributions are increased to longer periods, in general, with rotation periods of over 100 hr occurring for a few tenths of a percent for some component populations. Thus, this mechanism may account for some of the noted excess in slow rotators among the NEOs. Planetary flybys also cause NEOs to enter a tumbling state, with approximately 0.5% of the population being placed into a long-axis rotation mode. Finally, based on the evolution of spin states of different components of the NEO population, we compared the evolved states with the measured distribution of NEOs to estimate the relative populations of these components that comprise the NEOs.  相似文献   

10.
The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ∼5×10−4 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D?1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction of the total mass thought to have existed in the main belt zone during planet formation. The remaining mass was most likely taken up by planetary embryos formed in the same region. Our results suggest that numerous D>200 km planetesimals disrupted early in Solar System history, but only a small fraction of their fragments survived the dynamical depletion event described above. We believe this may explain the limited presence of iron-rich M-type, olivine-rich A-type, and non-Vesta V-type asteroids in the main belt today. The collisional lifetimes determined for main belt asteroids agree with the cosmic ray exposure ages of stony meteorites and are consistent with the limited collisional evolution detected among large Koronis family members. Using the same model, we investigated the near-Earth object (NEO) population. We show the shape of the NEO size distribution is a reflection of the main belt population, with main belt asteroids driven to resonances by Yarkovsky thermal forces. We used our model of the NEO population over the last 3 Gyr, which is consistent with the current population determined by telescopic and satellite data, to explore whether the majority of small craters (D<0.1-1 km) formed on Mercury, the Moon, and Mars were produced by primary impacts or by secondary impacts generated by ejecta from large craters. Our results suggest that most small craters formed on these worlds were a by-product of secondary rather than primary impacts.  相似文献   

11.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

12.
The near-Earth objects and their potential threat to our planet   总被引:1,自引:0,他引:1  
The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q<1.3 AU and which can approach or cross that of the Earth. A NEA is defined as a “potentially hazardous asteroid” (PHA) for Earth when its minimum orbit intersection distance (MOID) comes inside 0.05 AU and it has an absolute magnitude H<22 mag (i.e. mean diameter > 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.  相似文献   

13.
Radar echoes from Earth co-orbital Asteroid 2002 AA29 yield a total-power radar cross section of 2.9×10−5 km2 ±25%, a circular polarization ratio of SC/OC=0.26±0.07, and an echo bandwidth of at least 1.5 Hz. Combining these results with the estimate of its visual absolute magnitude, HV=25.23±0.24, from reported Spacewatch photometry indicates an effective diameter of 25±5 m, a rotation period no longer than 33 min, and an average surface bulk density no larger than 2.0 g cm−3; the asteroid is radar dark and optically bright, and its statistically most likely spectral class is S. The HV estimate from LINEAR photometry (23.58±0.38) is not compatible with either Spacewatch's HV or our radar results. If a bias this large were generally present in LINEAR's estimates of HV for asteroids it has discovered or observed, then estimates of the current completeness of the Spaceguard Survey would have to be revised downward.  相似文献   

14.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

15.
Hidden Mass in the Asteroid Belt   总被引:1,自引:0,他引:1  
The total mass of the asteroid belt is estimated from an analysis of the motions of the major planets by processing high precision measurements of ranging to the landers Viking-1, Viking-2, and Pathfinder (1976-1997). Modeling of the perturbing accelerations of the major planets accounts for individual contributions of 300 minor planets; the total contribution of all remaining small asteroids is modeled as an acceleration caused by a solid ring in the ecliptic plane. Mass Mring of the ring and its radius R are considered as solve-for parameters. Masses of the 300 perturbing asteroids have been derived from their published radii based mainly on measured fluxes of radiation, making use of the corresponding densities. This set of asteroids is grouped into three classes in accordance with physical properties and then corrections to the mean density for each class are estimated in the process of treating the observations. In this way an improved system of masses of the perturbing asteroids has been derived.The estimate Mring≈(5±1)×10−10M is obtained (M is the solar mass) whose value is about one mass of Ceres. For the mean radius of the ring we have R≈2.80 AU with 3% uncertainty. Then the total mass Mbelt of the main asteroid belt (including the 300 asteroids mentioned above) may be derived: Mbelt≈(18±2)×10−10M. The value Mbelt includes masses of the asteroids which are already discovered, and the total mass of a large number of small asteroids—most of which cannot be observed from the Earth. The second component Mring is the hidden mass in the asteroid belt as evaluated from its dynamical impact onto the motion of the major planets.Two parameters of a theoretical distribution of the number of asteroids over their masses are evaluated by fitting to the improved set of masses of the 300 asteroids (assuming that there is no observational selection effect in this set). This distribution is extrapolated to the whole interval of asteroid masses and as a result the independent estimate Mbelt≈18×10−10M is obtained which is in excellent agreement with the dynamical finding given above.These results make it possible to predict the total number of minor planets in any unit interval of absolute magnitude H. Such predictions are compared with the observed distribution; the comparison shows that at present only about 10% of the asteroids with absolute magnitude H<14 have been discovered (according to the derived distribution, about 130,000 such asteroids are expected to exist).  相似文献   

16.
17.
Abstract— From 2001 June 17 to 25, we held the first international workshop in Erice, Italy, dedicated to the determination of geological and geophysical properties of near‐Earth objects (NEOs). The goal was to develop a roadmap for determining the physical and chemical properties of NEOs in the coming decades to meet the scientific requirements for development of Earth collision avoidance technology. We identified many properties that are desired, but four measurements are needed most critically for any potentially hazardous NEO: (1) its mass, (2) its mass distribution, (3) its material strengths, and (4) its internal structure. Global (whole‐body) properties, such as material strengths and internal structure, can be determined best from the analyses of permeating waves: artificially initiated seismology and multifrequency reflection and transmission radio tomography. Seismology provides the best geophysical (material strengths) data of NEOs composed of consolidated materials while radio tomography provides the best geological data (e.g., the state of fracture) of electrically nonconducting media. Thus, the two methods are complementary: seismology is most suitable for stony and metallic asteroids, while radio tomography is most appropriate for comet nuclei and carbonaceous asteroids. The three main conclusions are (1) remote sensing for physical characterization should be increased, (2) several dedicated NEO missions should be prepared for geophysical and geological investigations, and (3) that it is prudent to develop and prove the technology to make geophysical measurements on NEOs now.  相似文献   

18.
David Morrison 《Icarus》1977,31(2):185-220
The radiometric method of determining diameters of asteroids is reviewed, and a synthesis of radiometric and polarimetric measurements of the diameters and geometric albedos of a total of 187 asteroids is presented. All asteroids with diameters greater than 250 km are identified, and statistical studies can be carried out of the size distributions of different albedo classes down to 80-km diameter for the entire main asteroid belt (2.0–3.5 AU). The distribution of albedos is strongly bimodal, with mean albedos for the C and S groups of 0.035 and 0.15, respectively. The C asteroids outnumber the S at all sizes and all values of semi-major axis, increasing from a little over half the population inside 2.5 AU to more than 95% beyond 3.0 AU; for all objects with D > 70 km, the ratio C/(C+S) is 0.88 ± 0.04. More than half of all asteroids in this size range have a > 3.0 AU. The M asteroids constitute about 5% of the population for a < 3.0 AU, but no members of of this class have been identified in the outer belt. There are no significant differences between the distributions of C, S, and M asteroids for the largest asteroids (D > 200 km) and for those of intermediate size (200–270 km). The total mass in the belt, down to 70-km size, but excluding Ceres, is about 2 × 1024 g. Evidence is presented that several large asteroids rotate in a prograde sense, and that a real difference existsbetween the bulk densities of Ceres and Vesta.  相似文献   

19.
We present new visible and near-infrared spectroscopic measurements for 252 near-Earth (NEO) and Mars-crossing (MC) objects observed from 1994 through 2002 as a complement to the Small Main-Belt Asteroid Spectroscopic Survey (SMASS, http://smass.mit.edu/). Combined with previously published SMASS results, we have an internally consistent data set of more than 400 of these objects for investigating trends related to size, orbits, and dynamical history. These data also provide the basis for producing a bias-corrected estimate for the total NEO population (Stuart and Binzel, 2004, Icarus 170, 295-311). We find 25 of the 26 Bus (1999, PhD thesis) taxonomic types are represented, with nearly 90% of the objects falling within the broad S-, Q-, X-, and C-complexes. Rare A- and E-types are more common in the MC than NEO population (about 5% compared to <1%) and may be direct evidence of slow diffusion into MC orbits from the Flora and Hungaria regions, respectively. A possible family of MC objects (C-types) may reside at the edge of the 5:2 jovian resonance. Distinct signatures are revealed for the relative contributions of different taxonomic types to the NEO population through different source regions. E-types show an origin signature from the inner belt, C-types from the mid to outer belt, and P-types from the outer belt. S- and Q-types have effectively identical main-belt source region profiles, as would be expected if they have related origins. A lack of V-types among Mars-crossers suggests entry into NEO space via rapid transport through the ν6 and 3:1 resonances from low eccentricity main-belt orbits, consistent with a Vesta origin. D-types show the strongest signature from Jupiter family comets (JFC), with a strong JFC component also seen among the X-types. A distinct taxonomic difference is found with respect to the jovian Tisserand parameter T, where C-, D-, and X-type (most likely low albedo P-class) objects predominate for T?3. These objects, which may be extinct comets, comprise 4% of our observed sample, but their low albedos makes this magnitude limited fraction under-representative of the true value. With our taxonomy statistics providing a strong component to the diameter limited bias correction analysis of Stuart (2003, PhD thesis), we estimate 10-18% of the NEO population above any given diameter may be extinct comets, taking into account asteroids scattered into T<3 orbits and comets scattered into T>3 orbits. In terms of possible space weathering effects, we see a size-dependent transition from ordinary chondrite-like (Q-type) objects to S-type asteroids over the size range of 0.1 to 5 km, where the transition is effectively complete at 5 km. A match between the average surface age of 5 km asteroids and the rate of space weathering could constrain models for both processes. However, space weathering may proceed at a very rapid rate compared with collisional timescales. In this case, the presence or absence of a regolith may be the determining factor for whether or not an object appears “space weathered.” Thus 0.1 to 5 km appears to be a critical size range for understanding the processes, timescales, and conditions under which a regolith conducive to space weathering is generated, retained, and refreshed.  相似文献   

20.
M. Delbò  A. Cellino 《Icarus》2007,188(1):266-269
The near-Earth object (99942) Apophis will make an extremely close approach to the Earth in 2029, and currently has approximately a one-in-45,000 chance of impacting our planet in 2036 (JPL Sentry, November 2006). Computation of the orbital evolution of this object is limited by insufficient knowledge of physical properties required to determine the role played by non-gravitational effects. Using polarimetric observations, we have obtained the first reliable determination of the albedo of Apophis, obtaining 0.33±0.08. We also derive an updated estimate of the asteroid's absolute magnitude: H=19.7±0.4. Using this albedo and H, we find that Apophis has a diameter of 270±60 m, slightly smaller than preliminary estimates based upon an assumed albedo. Our observations demonstrate the feasibility of polarimetric observations aimed at obtaining albedos and sizes of small, potentially hazardous asteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号