首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is argued that the formation of a dwarf galaxy causes a massive burst of star formation, resulting in the ejection of most of the available gas from the galaxy as a weakly collimated wind. The ejected gas can give rise to a damped Lyα absorber (DLA). Weakly collimated outflows naturally explain the asymmetric profiles seen in low-ionization absorption lines caused by heavy elements associated with DLAs, where absorption is strongest at one edge of the absorption feature. The shape of the distribution of column densities in the model agrees reasonably well with observations. In particular, the break in slope is caused by external photoionization of the wind. A semi-analytical model for galaxy formation is used to show that, for currently acceptable cosmological parameters, dwarf galaxy outflows can account for the majority of DLA systems and their distribution with redshift. This model also predicts a correlation between velocity structure and metallicity of DLA systems, in qualitative agreement with observations. DLAs do not require many large, rapidly rotating disc galaxies to have formed early on, as in other models for their origin.  相似文献   

2.
We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry–Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy’s minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy’s stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region (r ≤ 5?), are ≈1 Gyr and ≈?0.4 dex, respectively. Both young (2?5 × 108 yr) and old (5?10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8? south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.  相似文献   

3.
We present an analysis of the metallicity and star formation activities of H II regions in the interacting system Arp 86, based on the first scientific observations using multi-object spectroscopy with the 2.16 m telescope at the Xinglong Observing Station. We find that the oxygen abundance gradient in Arp 86 is flatter than that in normal disk galaxies, which confirms that gas inflows caused by tidal forces during encounters can flatten the metallicity distributions in galaxies. The companion galaxy NGC 7752 is currently experiencing a galaxy-wide starburst with a higher star formation rate surface density than the main galaxy NGC 7753, which can be explained in that the companion galaxy is more susceptible to the effects of interaction than the primary. We also find that the galaxy 2MASX J23470758+2926531 has similar abundance and star formation properties to NGC 7753, and may be a part of the Arp 86 system.  相似文献   

4.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

5.
We have studied the kinematics of the ionized gas in the nearly face-on galaxy NGC 3938 by means of observations made with theFabry–Perot interferometer TAURUS II at the William Herschel Telescope, using the Hα line. We have been able to produce high-resolution velocity and velocity-dispersion maps which allow us to make a detailed study of the kinematics of the ionized gas. In particular we have found that the vertical velocity dispersion is constant with galactocentric radius, as has already been found for the atomic and molecular gas in this galaxy. This suggests the existence of several heating mechanisms in the disc acting simultaneously to produce the observed behaviour. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
By creating and analyzing two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with high-quality Chandra data,we detect a high-abundance (■0.7 Z⊙) arc,where the metal abundance is significantly higher than the surrounding regions by ■0.3Z⊙.This structure shows tight spatial correlations with the member galaxy PGC 046529,as well as with the arm-like feature identified on the X-ray image in the previous work of Randall et al.(2009).Since no apparent signature of AGN activity i...  相似文献   

7.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

8.
Based on SDSS data and spectroscopic observations with the 6-m BTA telescope at SAO RAS, we have studied the galaxy SDSS J170745+302056. By the set of its characteristics— an exponential brightness distribution, a central stellar disk surface brightness μ0(B) = 23m. 25/—, blue colors, a low metallicity, and a moderate star formation rate—this galaxy belongs to typical low-surfacebrightness spiral galaxies. The exponential scale length of the galaxy’s disk is ≈3 kpc, while its optical diameter exceeds 20 kpc. SDSS J170745+302056 is a member of a group of five galaxies and possibly interacts with the galaxy UGC 10716. The existence of a large low-surface-brightness galaxy in such a dense environment is very unusual.  相似文献   

9.
We select 107 blue-core galaxies from the MaNGA survey, studying their morphology, kinematics as well as the gas-phase metallicity. Our results are as follows:(i) In our sample, 26% of blue-core galaxies have decoupled gas-star kinematics, indicating external gas accretion; 15% have bar-like structure and 8% show post-merger features, such as tidal tails and irregular gas/star velocity field. All these processes/features, such as accreting external misaligned gas, interaction and bar, can trigger gas inflow. Thus the central star-forming activities lead to bluer colors in their centers(blue-core galaxies).(ii) By comparing with the SDSS DR7 star-forming galaxy sample, we find that the blue-core galaxies have higher central gas-phase metallicity than what is predicted by the local mass-metallicity relation. We explore the origin of the higher metallicity, finding that not only the blue-core galaxies, but also the flat-gradient and red-core galaxies all have higher metallicity. This can be explained by the combined effect of redshift and galaxy color.  相似文献   

10.
The formation of a disk galaxy within a slowly growing dark halo is simulated with a new chemo-dynamical model. The model describes the evolution of the stellar populations, the multi-phase ISM and all important interaction. I find, that the galaxy forms radially from inside-out and vertically from top-to-bottom. The derived stellar age distributions show that the inner halo is the oldest component, followed by the outer halo, the triaxial bulge, the halo-disk transition region and the disk. Despite the still idealized model, the final galaxy resembles present-day disk galaxies in many aspects. In particular, the stellar metallicity distribution in the halo of the model resembles the one of M31. The bulge in the model shows, at least two stellar subpopulations, an early collapse population and a population that formed later out of accreted disk mass. In the stellar metallicity distribution of the disk, I find a pronounced ‘G-dwarf problem’ which is the result of a pre-enrichment of the disk ISM with metal-rich gas from the bulge. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
As a tool for interpreting nearby and high-redshift galaxy data from the optical to K-band we present our chemically consistent spectrophotometric evolutionary synthesis models. These models take into account the increasing initial metallicity of successive stellar generations using recently published metallicity-dependent stellar evolutionary tracks, stellar yields and model atmosphere spectra. The influence of the metallicity is analysed. Dust absorption is included on the basis of gas content and abundance as it varies with time and galaxy type. We compare our models with IUE template spectra and are able to predict UV fluxes for different spectral types. Combining our models with a cosmological model we obtain evolutionary and k corrections for various galaxy types and show the differences from models using only solar metallicity input physics as a function of redshift, wavelength band and galaxy type. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

13.
We present new important results about the intermediate-type Seyfert galaxy Mrk 315, recently observed through optical imaging and integral-field spectroscopy. Broad-band images were used to study the morphology of the host galaxy, narrow-band Hα images to trace the star-forming regions, and middle-band [O  iii ] images to evidence the distribution of the highly ionized gas. Some extended emission regions were isolated and their physical properties studied by means of flux-calibrated spectra. High-resolution spectroscopy was used to separate different kinematic components in the velocity fields of gas and stars. Some peculiar features characterize this apparently undisturbed and moderately isolated active galaxy. Such features, already investigated by other authors, are re-analysed and discussed in the light of these new observations. The most relevant results we obtained are: the multitiers structure of the disc; the presence of a quasi-ring of regions with star formation much higher than previous claims; a secondary nucleus confirmed by a stellar component kinematically decoupled by the main galaxy; a new hypothesis about the controversial nature of the long filament, initially described as hook shaped, and more likely made of two independent filaments caused by interaction events between the main galaxy and two dwarf companions.  相似文献   

14.
Recent X-ray observations have shown that intracluster medium has non-primordial composition. Iron lines have been detected. We present preliminary results on modelling of the chemical evolution of the intracluster medium in galaxy clusters. We consider in detail the galactic winds driven by supernovae, taking into account the binding energy of the galactic gas. We try to explain the metallicity gradient observed in the Perseus cluster from morphological segregation of galaxies in the inner part of the cluster.  相似文献   

15.
We present our observations of the galaxy UGS 5600 with a long-slit spectrograph (UAGS) and a multipupil field spectrograph (MPFS) attached to the 6-m Special Astrophysical Observatory telescope. Radial-velocity fields of the stellar and gaseous components were constructed for the central region and inner ring of the galaxy. We proved the existence of two nearly orthogonal kinematic subsystems and conclude that UGC 5600 is a galaxy with an inner polar ring. In the circumnuclear region, we detected noncircular stellar motions and suspected the existence of a minibar. The emission lines are shown to originate in H II regions. We estimated the metallicity from the intensity ratio of the [N II]λ6583 and Hα lines to be nearly solar, which rules out the possibility that the polar ring was produced by the accretion of gas from a dwarf companion.  相似文献   

16.
In the galaxy parameter fitting by means of stellar population synthesis, it is found that compared with the evolutionary population synthesis (EPS) model without binary interactions, the stellar age and metallicity of a galaxy derived from the EPS model with binary interactions are larger. But, we are still unclear how the binary interactions affect the galaxy evolution. For the early-type galaxies with the UV-excess phenomenon, there are two main-stream explanations: recent star formation (RSF) and binary interactions. In this study, we obtain the mass return rate and chemical yield for the stellar populations with and without binary interactions. In combination with the galaxy chemical evolution and photoionization models, we study the effects of binary interactions on the chemical evolution and metallicity evolution for the early-type galaxies with the UV-excess phenomenon under the two formation mechanisms. We find that the inclusion of binary interactions can raise the ejected mass, metallicity, alpha element, and accelerate the gas cooling. These can reasonably explain the conclusions made by the EPS models. Moreover, we find that the gas cooling is more efficient under the UV-excess formation mechanism by the binary interactions rather than the RSF, and the ratio of element abundance is different for the two mechanisms, which can be further used to distinguish these two mechanisms.  相似文献   

17.
We study the globular cluster (GC) system of the dust-lane elliptical galaxy NGC 6702, using B -, V - and I -band imaging observations carried out at the Keck telescope. This galaxy has a spectroscopic age of ≈2 Gyr suggesting recent star formation. We find strong evidence for a bimodal GC colour distribution, with the blue peak having a colour similar to that of the Galactic halo GCs. Assuming that the blue GCs are indeed old and metal-poor, we estimate an age of 2–5 Gyr and supersolar metallicity for the red GC subpopulation. Despite the large uncertainties, this is in reasonable agreement with the spectroscopic galaxy age. Additionally, we estimate a specific frequency of S N =2.3±1.1 for NGC 6702. We predict that passive evolution of NGC 6702 will further increase its specific frequency to S N ≈2.7 within 10 Gyr, in closer agreement to that of typical present-day ellipticals. We also discuss evidence that the merger/accretion event that took place a few Gyr ago involved a high gas fraction.  相似文献   

18.
Representative results from a comparison of the chemical evolution of spherical collapse models without and with a intercloud medium are presented. The hot metal-rich gas distributes quickly the metals produced in supernovae throughout the galaxy, thus leading to a more homogeneous chemical evolution and flatter metallicity gradients in the gas and the stars. The stellar population is somewhat less concentrated towards the centre. The strong outflow results in a substantial loss of metals from the galaxy to its surroundings, and a lower effective yield in the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
We show evidences that gas outflows occur in starburst galaxies as superbubbles evolve. We then question whether hot gas will be expelled and enrich the IGM with metals or be retained within the host galaxy. For this purpose we construct three extreme scenarios of the star formation histories for a sample of dwarf galaxies using either their present metallicity or their luminosity. The three scenarios imply different mechanical energy input rates, those are compared with theoretical lower limits for the ejection of processed matter out of host galaxies. The comparison strongly points at the existence of extended gaseous haloes acting as a barrier that allows these galaxies to retain their metals and enhance their abundance. Our findings strongly point that continuous star-forming processes, rather than coeval bursts, must contribute to the overall metallicity in our galaxy sample. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Acounter-rotating gas disk has been detected in the SA0 galaxy IC 560 located at the periphery of a sparse group of six late-type galaxies. The pattern of gas excitation and mid-infrared colors are indicative of ongoing star formation within 1 kpc of the center. Outside the gas disk with star formation the large-scale stellar disk of the galaxy has an old age and a very low metallicity, [Z/H] ≈ ?1. The source of external gas accretion onto IC 560 is undetected; the only option is a single infall of a companion rich in high-metallicity gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号