首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
绿泥石化是龙首山铀矿床重要的蚀变类型之一。通过对龙首山碱交代型铀矿床的绿泥石等蚀变矿物进行的岩相学和电子探针成分分析研究,确定了龙首山地区绿泥石的化学类型主要为铁镁绿泥石,少数为蠕绿泥石。依据绿泥石成因或与共生矿物的关系,绿泥石可被划分为黑云母蚀变型、长石蚀变型、沥青铀矿共生型和副矿物共生型等4种类型。泥质岩是本区绿泥石的主要原岩类型,是多期次地质作用形成的产物。研究认为,龙首山地区碱交代型铀矿床的成矿过程可表述为矿前期在相对较高温度的热液流体作用下,黑云母发生绿泥石化蚀变,随后热液继续交代长石,形成长石蚀变型绿泥石,进而在成矿期热液温度相对较低的条件下形成与沥青铀矿紧密共生的绿泥石。绿泥石在铀成矿过程中不但活化了花岗岩里的铀,而且还给铀矿化供应了相对良好的积淀环境。  相似文献   

2.
绿泥石化是华南热液铀矿床重要的蚀变类型之一。本文通过对南岭中段黄沙矿区223铀矿床绿泥石的岩相学和电子探针成分分析,区分出4种产出状态的绿泥石,识别了绿泥石的化学成分类型,计算了绿泥石的形成温度、n(Mg)/n(Fe+Mg)等相关指数,讨论了绿泥石形成机制环境及其与铀成矿的关系。研究表明223铀矿床绿泥石主要分为黑云母蚀变型、长石蚀变型、裂隙充填型和铀矿共生型4种产出类型,为富铁的蠕绿泥石,形成于还原环境,形成温度为200~282℃,属于中温热液蚀变;绿泥石的形成机制主要有溶蚀-沉淀结晶和溶蚀-迁移-沉淀结晶2种方式。绿泥石化改变了岩石物理-力学性质、原岩中铀的赋存状态,提供了成矿热液部分铀源和有利于铀富集成矿的地球化学环境。  相似文献   

3.
岌岭铀矿床位于龙首山铀成矿带中段,是我国典型的碱交代型铀矿床之一。绿泥石化在岌岭铀矿床中广泛出现,是重要的蚀变类型和找矿标志之一。前人在绿泥石方面的研究主要通过绿泥石地质温度计来估算成矿相关温度及讨论成矿环境。本文对岌岭铀矿床矿化岩中绿泥石开展了岩相学研究和电子探针化学成分分析,划分了绿泥石类型,估算了绿泥石形成温度和相关特征值,讨论了绿泥石与铀成矿的关系。得出以下几点认识:1)岌岭铀矿床绿泥石主要包含4类,即裂隙充填型、浸染分布型、黑云母蚀变型及长石蚀变型,其中裂隙充填型和浸染分布型绿泥石与铀成矿相关,而黑云母蚀变型和长石蚀变型与铀成矿无关;2)根据绿泥石(Fetotal/Fe+Mg)/Si分类图解确定了岌岭铀矿床绿泥石均属于辉绿泥石;3)采用半经验地质温度计估算了岌岭铀矿床绿泥石形成温度,与铀成矿无关绿泥石形成温度介于129~297℃,平均值为242℃,与铀成矿相关的绿泥石形成温度介于112~264℃,平均值为190℃,属中低温范畴;4)与铀矿物无共生关系的绿泥石化热液活动使围岩物理化学性质发生改变,同时活化黑云母中富铀副矿物中的铀。在与铀矿物有关的绿泥石化热液活动中,Fe、Mg从热液中迁出形成绿泥石,导致流体化学性质变化,破坏了流体的稳定性,促使铀从流体中富集沉淀。  相似文献   

4.
绿泥石化是南岭中段黄沙铀矿区中广泛发育的热液蚀变类型。在岩相学的基础上,通过电子探针分析技术研究了铀矿区内221、223铀矿床绿泥石的矿物共生组合类型与形貌特征,划分了绿泥石的化学类型,提出该矿区绿泥石的4种产出状态,探讨了绿泥石的形成温度和环境,讨论了绿泥石的形成机制及其与铀成矿的关系。研究结果显示该矿区绿泥石:(1)在形貌特征上,矿前期绿泥石主要呈黑云母假象或星点状、团块状产出,成矿期绿泥石主要呈脉状产出;(2)在成因类型上,绿泥石主要有黑云母蚀变型、长石蚀变型、裂隙充填型和与铀矿共生型4种类型;(3)绿泥石的形成温度为200~310℃,其中与铀矿物共生型绿泥石的平均形成温度为215°C,属于中低温热液矿床范围;(4)绿泥石主要形成于还原环境,形成机制主要有溶解-沉淀和溶解-迁移-沉淀两种。  相似文献   

5.
鹿井铀矿田位于桃山-诸广铀成矿带的南西部,是华南最主要花岗岩型铀矿田之一,碎裂蚀变岩型铀矿化在该矿田占主导地位,小山铀矿床是近年来新发现的碎裂蚀变岩型铀矿床之一。绿泥石化是该铀矿化重要的蚀变类型和找矿标志,然而针对绿泥石特征及其与铀成矿的关系研究较为薄弱。本文以钻孔ZK1-1揭露的热液蚀变带为研究对象,对绿泥石开展精细矿物学研究。结果表明:(1)小山铀矿床主要存在4种形态类型的绿泥石,分别为黑云母蚀变型、长石蚀变型、裂隙充填型和与铀矿物密切共生型;(2)绿泥石以富铁的铁镁绿泥石为主,部分为蠕绿泥石;(3)绿泥石的形成温度在213.5~249.8℃之间,平均值为233.4℃,属中低温条件;(4)绿泥石形成于低氧逸度、高硫逸度的还原环境,形成机制包括溶解—沉淀和溶解—迁移—沉淀,其中晶质铀矿、独居石以及磷钇矿矿物发生溶解,形成铀石—钍石矿物;(5)绿泥石蚀变改变了围岩性质、铀的赋存状态以及物理化学环境,促使铀的活化、迁移以及沉淀。  相似文献   

6.
绿泥石化是大府上铀矿床重要的成矿期蚀变类型。绿泥石的形貌特征显示该矿床绿泥石主要有2种产出形态,即沿长石、石英等矿物裂隙生长呈蠕虫状集合体产出的绿泥石和由黑云母蚀变而成的绿泥石。本文主要利用电子探针微区分析方法研究了绿泥石化学成分特征。研究结果表明,该矿床绿泥石为富铁的蠕绿泥石,形成于还原环境;绿泥石形成温度为201.48~224.20℃,平均213.65℃,属中低温热液蚀变范围;形成机制主要有"溶蚀-结晶"和"溶蚀-迁移-结晶"两种方式。绿泥石成分特征对探讨铀成矿环境与矿床评价具有重要的指示意义。  相似文献   

7.
向阳坪铀矿床是近年在苗儿山地区发现的重要矿床,绿泥石化是向阳坪铀矿床重要的蚀变类型和找矿标志。本文对向阳坪矿床发现的铀-绿泥石型矿石的蚀变矿物学特征进行了系统地观察,结合电子探针原位微区分析,查明了绿泥石相关矿物的共生组合关系,获得了其化学定量分析结果,划分了绿泥石的种类及其形成条件,在此基础上探讨了绿泥石性质及其对铀成矿的启示。结果显示,向阳坪铀矿床绿泥石可分为黑云母蚀变型、裂隙充填型、铀矿物相关型和黏土矿物吸附铁镁质转变型4种。铁硅协变图解表明向阳坪矿床主体为铁镁绿泥石,部分为蠕绿泥石,含少量的密绿泥石。据经验公式计算所得绿泥石形成温度变化范围为190~265℃,平均239℃,属中低温热液蚀变,其形成机制包括溶蚀-结晶和溶蚀-迁移-结晶2种。绿泥石化为铀成矿过程提供了所需的环境,促进了铀的活化、迁移并最终沉淀成矿。  相似文献   

8.
桃山大布铀矿床绿泥石特征及其形成环境   总被引:1,自引:0,他引:1  
花岗岩型铀矿中,绿泥石化作为热液蚀变的重要类型之一,其种类多样,据此可以推断其形成环境。笔者在岩石薄片观察的基础上,通过对绿泥石进行电子探针成分分析,认为桃山大布铀矿床的绿泥石主要为铁绿泥石、蠕绿泥石,其形成于中低温酸性热液作用环境。  相似文献   

9.
鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义   总被引:3,自引:0,他引:3  
夏菲  孟华  聂逢君  严兆彬  张成勇  李满根 《地质学报》2016,90(12):3473-3482
纳岭沟铀矿床位于鄂尔多斯盆地北部,具有明显的后期热液作用的特征,矿体空间展布主要受控于绿色-灰色砂岩的过渡界面,与绿泥石化的蚀变砂岩关系密切。通过对纳岭沟铀矿床不同颜色砂岩中的绿泥石进行详细的岩相学研究和电子探针化学成分分析,依据绿泥石的成因与共生矿物的关系,识别出绿泥石主要的3种类型:填隙物型绿泥石,片状与黄铁矿共生型绿泥石以及黑云母蚀变型绿泥石;同时通过绿泥石的Fe-Si图解确定了纳岭沟铀矿床不同颜色砂岩中的绿泥石主要为铁镁绿泥石和密绿泥石。根据Al/(Fe+Mg+Al)-Mg/(Fe+Mg)的关系图解确定出不同颜色砂岩中的绿泥石具有铁镁质流体和泥质两种来源,通过绿泥石中主要阳离子与镁的关系图解和计算得出的绿泥石形成温度共同确定出绿泥石是多期次的中低温热液流体作用的产物。综合研究表明,纳岭沟铀矿床的绿泥石形成至少经历了温度稍高的还原性流体和温度稍低的氧化性流体等两个期次的流体作用,稍高温的还原性流体与成矿关系更为重要。与绿泥石形成有关的热液流体作用不仅带入了部分铀,还促进了铀的活化和运移。  相似文献   

10.
为探讨山西铜矿峪铜矿床绿泥石的成岩成矿意义,运用电子探针分析了矿床中斑岩型铜矿中的绿泥石。结果显示,矿区绿泥石可以分为与石英硫化物脉共(伴)生的绿泥石(Ⅰ型)、与方解石硫化物脉共(伴)生的绿泥石(Ⅱ型)、斑岩中的绿泥石(Ⅲ型)和围岩蚀变带中的绿泥石(Ⅳ型)4种类型。4种类型绿泥石主要为富铁种属的蠕绿泥石(铁绿泥石)和密绿泥石,指示其均形成于偏还原环境;在其结构的离子置换中均表现为Fe对Mg的置换,反映其形成都与铁镁质围岩有关,并都经历了多期次变质作用。由绿泥石地质温度计估算出4类绿泥石的形成温度为180~220℃,均属于中-低温热液蚀变范围。在铜成矿过程中,随着温度不断下降热液流体性质向酸性逐渐演化。  相似文献   

11.
何明友 《矿床地质》1997,16(2):181-188
利用热力学方法计算了西秦岭铀矿床含矿热液中铀的迁移形式。结果表明,从含矿热液早阶段到主成矿作用发生之前,热液中的铀主要以「UO2(CO3)^0」形式迁移;在晚阶段残余热液中,铀的迁移形式改变为「UO2(SO4)^0」为主。铀迁移形式改变的原因与大气降水中SO^2-4离子的大量带入有关,表明含矿热液来自深部而非大气降水。  相似文献   

12.
氧化还原障在热液铀矿成矿中的作用   总被引:5,自引:0,他引:5  
铀是变价元素,氧化还原条件控制铀的迁移和沉淀。铀在氧化环境中呈U~(6+)形式存在,在还原条件下则以U~(4+)形式存在。氧化态六价铀主要以可溶的碳酸铀酰/氟化铀酰络合物形式在水溶液中迁移,还原态四价铀主要以沥青铀矿和铀石等形式富集沉淀成矿。热液铀矿的形成需要一对空间上密切共生的氧化障/氧化剂和还原障/还原剂,二者缺一不可。首先,氧化障中氧化剂将富铀岩石中的铀大量氧化形成U~(6+),溶解进入水溶液迁移;第二,高氧化性富铀溶液遇到还原障,U~(6+)还原成U~(4+)沉淀下来,富集形成铀矿。前人虽然对铀的地球化学性质及氧化还原反应在铀成矿中作用已比较了解,但如何在实际铀矿成矿系统中准确识别氧化还原障,有效利用氧化还原障的控矿机理指导找矿,还存在一些模糊认识,制约了铀成矿理论的发展和找矿方法的提升。本文以我国最重要的砂岩型铀矿、火山岩型铀矿、花岗岩型铀矿和变质型铀矿为例,总结了与铀矿化有关的氧化还原障的主要类型,探讨了红层等蒸发盐地层(氧化障),有机质、煌斑岩等中基性岩脉(还原障)与铀矿之间的关系及控矿机制,揭示了成矿盆地中铀-煤、铀-气(油)共生的机制,阐明了翁泉沟硼、铁、铀矿共生原因,建立了不同类型铀矿成矿模型。  相似文献   

13.
红石泉矿床位于龙首山铀成矿带的西段,是我国发现的最为典型的伟晶岩型铀矿床,具有岩体型矿化的特点,铀矿化发育于伟晶岩体内部和接触混染带内。通过对含矿主岩伟晶岩进行系统研究表明,红石泉矿床中铀以晶质铀矿、沥青铀矿和铀黑形式存在。在中条造山运动晚期(1 735±67) Ma形成初始铀矿化,并在海西期(356±46) Ma部分矿石发生了热液叠加改造。早期岩浆成矿阶段主要形成晶质铀矿,晚期热液叠加改造阶段主要形成沥青铀矿,并发育了与芨岭钠交代型铀矿床相似的“四位一体”蚀变组合,热液改造过程是一个去K、增Na的过程。  相似文献   

14.
浙江大桥坞斑岩体“双层结构”与铀矿化   总被引:1,自引:0,他引:1  
  相似文献   

15.
华南热液铀矿成矿作用若干问题探讨   总被引:1,自引:0,他引:1  
华南地区基底铀背景值较高,区域热液铀矿形成于晚中生代-古近纪(K-E)的地壳拉张期。区内各类型热液铀矿床在成矿时代、温压条件、矿物组合及热液蚀变等方面有一定的共同特征,根据热液铀矿床的分布可划分为三大成矿带。铀成矿与伸展构造关系密切,且成矿流体、物质可能为不同来源;铀成矿期铀主要以碳酸铀络合物形式运移。  相似文献   

16.
蚀变矿物组合对热液型铀矿勘探具有重要的指示意义。相对于航空或航天成像光谱,地面成像光谱在小范围矿床尺度的蚀变精细识别方面更具优势。为研究江西相山铀矿化热液蚀变组合特征,利用HySpex地面成像光谱仪获取可见光-近红外-短波红外波段的钻孔岩心成像光谱数据,针对铀矿化的两种基本类型——水云母-萤石型和碱交代型,分别从蚀变单矿物和蚀变矿物组合两个角度分析和提取他们的诊断性光谱特征,建立了光谱识别标志。发现伊利石具有光谱多型特征,按特征波长位置分为Ⅰ型和Ⅱ型两类。水云母-萤石型铀矿化蚀变组合包含高岭石、高岭石+地开石、蒙脱石和Ⅰ型伊利石,碱交代型铀矿化蚀变组合包含绿泥石、碳酸盐、绿蒙混层、赤铁矿和Ⅱ型伊利石;基于光谱匹配模型和岩心填图结果对两类铀矿化段蚀变结构进行了分析,铀矿化中心由近及远分别具有蒙脱石→Ⅰ型伊利石→高岭石+地开石→高岭石和碳酸盐→赤铁矿+绿泥石→绿蒙混层→Ⅱ型伊利石的分布特征,均存在流体的叠置改造作用;通过岩心成像光谱编录及三维建模表明,两类伊利石具有空间上的上、下分带特点,这预示着两种铀矿化亦具有相似的空间分布特征。上述研究为相山地区进一步找矿勘探提供了一定参考。  相似文献   

17.
江西相山铀矿田西部地区实施的铀矿科学深钻3号孔在深部-700 m发现大量铅锌多金属矿化脉,垂向上呈"上铀下多金属"的分布特征。文章对深部多金属矿化进行了详细的矿物学和矿石组构学研究,并对其成因进行了探讨。研究表明,矿石结构主要有中细粒及微粒结构、自形晶粒状结构、他形晶粒状结构、填隙结构、包含结构、镶边结构、固溶体分离结构、碎裂结构、环带结构等;矿石构造主要有脉状构造、细脉状构造、条带状构造、角砾状构造、致密块状构造、稠密浸染状构造等。矿化类型主要有石英-毒砂-黄铁矿(锡石、黄铜矿)型、黄铁矿型、闪锌矿-方铅矿-黄铁矿型、闪锌矿-方铅矿-碳酸盐(菱铁矿-方解石)型,在空间上具有明显的分带性。根据矿物组合和穿插关系,矿化过程经历了成矿前期的碱性流体作用,形成矿前期绿泥石、锡石和金红石。铅锌成矿期经历了石英-毒砂阶段、黄铁矿化阶段、铅锌矿化阶段、铅锌银碳酸盐阶段等多期叠加。成矿后期以形成碳酸盐-石英脉为特征。综合分析认为,相山深部多金属矿化具有浅成、中低温特征,是与次火山岩有关的低硫化型浅成中低温热液多金属矿化。目前已经发现的铅锌多金属矿化很可能是深部矿化的一个端员,深部很有可能存在与成矿有关的次火山岩体,且具有寻找斑岩型多金属矿化的成矿潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号