首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The multiplicities of stars, and some other properties, were collected recently by Eggleton & Tokovinin, for the set of 4559 stars with Hipparcos magnitude brighter than 6.0 (4558 excluding the Sun). In this paper I give a numerical recipe for constructing, by a Monte Carlo technique, a theoretical ensemble of multiple stars that resembles the observed sample. Only multiplicities up to eight are allowed; the observed set contains only multiplicities up to seven. In addition, recipes are suggested for dealing with the selection effects and observational uncertainties that attend the determination of multiplicity. These recipes imply, for example, that to achieve the observed average multiplicity of 1.53, it would be necessary to suppose that the real population has an average multiplicity slightly over 2.0.
This numerical model may be useful for (i) comparison with the results of star and star cluster formation theory, (ii) population synthesis that does not ignore multiplicity above 2 and (iii) initial conditions for dynamical cluster simulations.  相似文献   

2.
With the objective of investigating the windwind collision phenomenon and supporting contemporaneous X-ray observations, we have organized a large-scale, coordinated optical monitoring campaign of the massive, highly eccentric O9 III+B1 III binary Iota Orionis. Successfully separating the spectra of the components, we refine the orbital elements and confirm the rapid apsidal motion in the system. We also see strong interaction between the components during periastron passage and detect phase-locked variability in the spectrum of the secondary star. However, we find no unambiguous signs of the bow shock crashing on the surface of the secondary, despite the predictions of hydrodynamic simulations. Combining all available photometric data, we find rapid, phase-locked variations and model them numerically, thus restricting the orbital inclination to 50° i 70°.  相似文献   

3.
Differential rotation can be detected in single line profiles of stars rotating more rapidly than about v sin i = 10km s-1 with the Fourier transform technique. This allows to search for differential rotation in large samples to look for correlations between differential rotation and other stellar parameters. I analyze the fraction of differentially rotating stars as a function of color, rotation, and activity in a large sample of F-type stars. Color and rotation exhibit a correlation with differential rotation in the sense that more stars are rotating differentially in the cooler, less rapidly rotating stars. Effects of rotation and color, however, cannot be disentangled in the underlying sample. No trend with activity is found. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
Based on a search for multi‐periodic variability among the semi‐regular red variable stars in the database of the All Sky Automated Survey (ASAS), a sample of 72 typical examples is presented. Their period analysis was performed using the Discrete Fourier Transform. In 41 stars we identified two significant periods each, simultaneously present, while the remaining 31 cases revealed even three such periods per star. They occur in a range roughly between 50 and 3000 days. Inter‐relationships between these periods were analyzed using the “double period diagram” which compares adjacent periods, and the so‐called “Petersen diagram”, the period ratio vs. the shorter period. In both diagrams we could identify six sequences of accumulation of the period values. For five of these sequences (containing 97 % of all data points) we found an almost perfect coincidence with those of previous studies which were based on very different samples of semiregular red variables. Therefore, existence and locations of these sequences in the diagrams seem to be universal features, which appear in any data set of semi‐regularly variable red giants of the AGB; we conclude that they are caused by different pulsation modes as the typical and consistent properties of similar stellar AGB configurations. Stellar pulsations can be considered as the principal cause of the observed periodic variability of these stars, and not binary, rotation of a spotted surface or other possible reasons suggested in the literature. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Three importantphysical processes occurringin contact binarysystems are studied. The first one is the effect of spin, orbital rotation and tide on the structure of the components, which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components. To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M and a 5M star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.  相似文献   

7.
8.
We spatially and temporally resolve the future Supernova (SN) rate in the Solar vicinity and the whole Galaxy by comparing observational parameters of massive stars with theoretical models for estimating age and mass and, hence, the remaining lifetime until the SN explosion. Our SN rate derived in time and space for the future (few Myr) should be the same as in the last few Myr by assuming a constant rate. From BVRIJHK photometry, parallax, spectral type, and luminosity class we compile a Hertzsprung‐Russell diagram (HRD) for 25027 massive stars and derive extinction, and luminosity, then mass, age, and remaining lifetime from evolutionary models. Within 600 pc our sample of SN progenitors and, hence, SN prediction, is complete, and all future SN events of our sample stars take place in 8 % of the area of the sky, whereas 90 % of the events take place in 7 % of the area of the sky. The current SN rate within 600 pc is increased by a factor of 5–6 compared with the Galactic rate. For a distance of 5 kpc our sample is incomplete, nevertheless 90 % of those SN events take place in only 12 % of the area of the projected sky. If the SN rate in the near future is the same as the recent past, there should be unknown young neutron stars concentrated in those areas. Our distribution can be used as input for constraints of gravitational waves detection and for neutron star searches. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Magnetars, neutron stars with ultrastrong magnetic fields  ( B ∼ 1014−1015G)  , manifest their exotic nature in the form of soft gamma-ray repeaters and anomalous X-ray pulsars. This study estimates the birthrate of magnetars to be ∼0.22 per century with a Galactic population comprising ∼17 objects. A population synthesis was carried out based on the five anomalous X-ray pulsars detected in the ROSAT All Sky Survey by comparing their number to that of massive OB stars in a well-defined volume. Additionally, the group of seven X-ray dim isolated neutron stars detected in the same survey were found to have a birthrate of ∼2 per century with a Galactic population of ∼22 000 objects.  相似文献   

10.
We report observations that confirm the identities of the optical counterparts to the transient sources RX J0544.1–7100 and RX J0520.5–6932 . The counterparts are suggested to be B-type stars. Optical data from the observations carried out at ESO and SAAO, together with results from the OGLE data base, are presented. In addition, X-ray data from the RXTE All-Sky Monitor are investigated for long-term periodicities. A strong suggestion for a binary period of 24.4 d is seen in RX J0520.5–6932 from the OGLE data.  相似文献   

11.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

12.
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼     XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the     measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag.  相似文献   

13.
14.
15.
The isothermal Lane–Emden equation arises in many astrophysical problems, in particular in modelling of a self-gravitating, polytropic gas in a spherically symmetric configuration. In this work, the isothermal Lane–Emden equation is investigated using the fractional approximation technique. The method provides an efficient and accurate way of obtaining approximate analytic solution to the Lane–Emden equation thus is useful in the modelling of self-gravitating gaseous spheres in astrophysics.  相似文献   

16.
Rapidly oscillating Ap stars constitute a unique class of pulsators with which to study non-radial oscillations under some — even for stars — unusual physical conditions. These stars are chemically peculiar, they have strong magnetic fields and they often pulsate in several high-order acoustic modes simultaneously. We discuss here an excitation mechanism for short-period oscillation modes based on the classical κ mechanism. We particularly stress the conditions that must be fulfilled for successful driving. Specifically, we discuss the roles of the chemical peculiarity and strong magnetic field on the oscillation modes and what separates these pulsators from δ Scuti and Am-type stars.  相似文献   

17.
We study the concept of radius-to-frequency mapping using a geometrical method for the estimation of pulsar emission altitudes. The semi-empirical relationship proposed by Kijak &38; Gil is examined over three decades of radio frequency. It is argued that the emission region in a millisecond pulsar occupies the magnetosphere over a distance of up to about 30 per cent of the light-cylinder radius, and that in a normal pulsar occupies up to approximately 10 per cent of the light-cylinder radius.  相似文献   

18.
This is the third paper of a series of papers where we explore the evolution of iron-rich ejecta from quark-novae. In the first paper, we explored the case where a quark-nova ejecta forms a degenerate shell, supported by the star's magnetic field, with applications to SGRs. In the second paper, we considered the case where the ejecta would have sufficient angular momentum to form a degenerate Keplerian torus and applied such a system to two AXPs, namely 1E2259+586 and 4U0142+615. Here, we explore the late evolution of the degenerate torus and find that it can remain unchanged for  ∼106 yr  before it becomes non-degenerate. This transition from a degenerate torus (accretion-dominated) to a non-degenerate disc (no accretion) occurs about 106 yr following the quark-nova, and exhibits features that are reminiscent of observed properties of Rotation RAdio Transients (RRATs). Using this model, we can account for the duration of both the radio bursts and the quiet phase, as well as the observed radio flux from RRATs. We discuss a connection between XDINs and RRATs and argue that some XDINs may be 'dead RRATs' that have already consumed their non-degenerate disc.  相似文献   

19.
The observed fraction of pulsars with interpulses, their period distribution and the observed pulse width versus pulse period correlation are shown to be inconsistent with a model in which the angle α between the magnetic axis and the rotation axis is random. This conclusion appears to be unavoidable, even when non-circular beams are considered. Allowing the magnetic axis to align from a random distribution at birth with a time-scale of  ∼7 × 107 yr  can, however, explain those observations well. The time-scale derived is consistent with that obtained via independent methods. The probability that a pulsar beam intersects the line of sight is a function of the angle α and therefore beam evolution has important consequences for evolutionary models and for estimations of the total number of neutron stars. The validity of the standard formula for the spin-down rate, which is independent of α, appears to be questionable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号