首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basic inclusions of two types occur in a kimberlitic diatreme at Kayrunnera in northwestern New South Wales. Type I inclusions comprise assemblages of clinopyroxene+garnet+rutile±plagioclase ±quartz±K-feldspar±scapolite±sphene±apaite. Type II inclusions have assemblages of clinopyroxene +garnet+kyanite+quartz±plagioclase and are lower in Ti, total Fe, and higher in Al and have a higher Mg/Mg+gSFe ratio than the Type I inclusions. Experimental and theoretical data indicate that both inclusion types equilibrated at between 850–900 ° C and 18–23 kb. Due to their low concentrations of incompatible elements, the Type I inclusions are considered to represent a basaltic melt derived from an Fe-rich mantle source rock, and not to be the product of fractionation. The Type II inclusions are believed to represent cumulates which formed from a basaltic magma. The presence of sulphur rich scapolite in the Type I inclusions extends the range of P-T conditions from which this mineral has been reported thus adding further credence to the hypothesis that it may act as a stable repository for S and CO2 in the crust and upper mantle.  相似文献   

2.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

3.
The stability and partial melting of synthetic pargasite in the presence of enstatitic orthopyroxene (opx), forsterite, diopsidic clinopyroxene (cpx), plagioclase (An50), and water has been studied in the range of 0.4–6.0 kb and 750–1000°C in the system Na2O-CaO-MgO-Al2O3-SiO2-H2O with a fixed bulk composition of pargasite+5 opx. The addition of orthopyroxene effectively reduces the stability field of pargasite by approximately 200°C at 1 kb. The invariant point involving pargasite coexisting with water-saturated liquid and anhydrous phase shifts from about 0.85 kb and 1025°C to 2.5±0.5 kb and 925±25°C with the addition of opx. Based on the solidus mineral assemblage and direct chemical analysis of quenched glass, the vapor-saturated liquid has a composition close to that of intermediate plagioclase. A layered silicate, interpreted to be Na-phlogopite, has an upper-thermal stability that nearly equals that of pargasite in the field of partial melting and coexists with liquid, pargasite, cpx, and forsterite at 6 kb, 1000°C. These results support the hypothesis that mantle metasomatism could involve formation of pargasitic amphibole from a silicate melt at depths as shallow as 8–10 km.  相似文献   

4.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

5.
Analyses of coexisting garnets, clinopyroxenes and plagioclases from eclogites and high pressure granulitic gneisses in the Kristiansund area within the west Norwegian basal gneiss region are used to establish the P-T conditions for the metamorphic peak for these rocks. Based on the distribution of Fe and Mg between coexisting garnet and clinopyroxene in both eclogite and granulites, equilibrium temperatures are estimated to 750 °±50 ° C. Pressures are derived from the absence of orthopyroxenes in the granulites, and from the assemblage clinopyroxene +plagioclase+quartz present in the gneisses. Equilibrium pressures are estimated to 18.5±3.0 kilobars, and these equilibrium conditions are thus compatible with equilibrium conditions derived for both orthopyroxene-free and most orthopyroxene-bearing country-rock eclogites from adjacent areas.  相似文献   

6.
Experiments were conducted at 6–30 kb and 875–1200°C on two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia. The (garnet + clinopyroxene + plagioclase + spinel) assemblage of DR9734 was stable between 10 and 12.5 kb, and 950 and 1,050°C. The compositions of its natural mineral phases were most closely approximated in experiments at 12.5 kb and 1,000–1,050°C. The (garnet + spinel + clinopyroxene + orthopyroxene + amphibole) assemblage of DR10165 was stable at pressures > 8 kb and temperatures > 950°C. However, differences between natural and experimental mineral compositions indicate that the mineral assemblage of this xenolith persisted metastably after cooling below 950°C with chemical exchange continuing down to approximately 850–900°C. When the experimental data for DR9734 and DR10165 are applied to mineralogical data for other mafic and ultramafic xenoliths from the Bullenmerri and Gnotuk Maars, they indicate that previous pressure and temperature estimates for individual xenoliths are 2–3 kb and 50°C too high. These corrections increase average temperatures for the geotherm beneath western Victoria by about 50°C over a depth range of 30–45 km and confirm its perturbed (high-temperature) character.This paper is a contribution to IGCP Project 304 (Lower Crustal Processes)  相似文献   

7.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

8.
The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase.In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in V p would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result.The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.  相似文献   

9.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

10.
In a bimineralic eclogite xenolith (sample JJG41) from the Roberts Victor kimberlite, compositional gradients in clinopyroxene are related to garnet exsolution. Two principal reactions involving clinopyroxene and garnet occur: (i) The net-transfer Al2Si-1Mg-1 which is responsible for garnet growth according to the equation 2Di+Al2Si-1Mg-1=Grossular+MgCa-1 (reaction 1). This has created substantial compositional gradients in Al, Si and Mg within clinopyroxene. (ii) The exchange of Fe–Mg between garnet and clinopyroxene (reaction 2). During the stage of garnet growth (reaction 1) the lamellae crystallized sequentially as a result of a temperature decrease from around 1400 to 1200° C. This exsolution growth-stage was under the control of Al diffusion in clinopyroxene and at around 1200° C further growth of garnet lamellae became impeded by the sluggishness of Al diffusion in the clinopyroxene host. However, reaction 2 continued during further cooling down to about 1000° C; this temperature being inferred from the constant Fe–Mg partitioning at clinopyroxene-garnet interfaces for the whole set of lamellae. The initial clinopyroxene in JJG41 was probably formed by crystallization from a melt in Archaean time. The cessation of Fe–Mg exchange between garnet and clinopyroxene at about 1000° C may well predate the eruption of the eclogite in kimberlite at around 100 Ma. Kinetic models of reaction are examined for both reactions. Modelling of reaction 1, involving both diffusion and interface migration, allows several means of estimating the diffusion coefficient of Al in clinopyroxene; the estimates are in the range 10-16-10-20 cm2/s at 1200° C. These estimates bracket the experimentally determined data for Al diffusion in clinopyroxene, and from these experimental data a preferred cooling rate of about 300° C/Ma is obtained for the period of growth of garnet exsolution lamellae. A geospeedometry approach (Lasaga 1983) suitable for a pure-exchange process (reaction 2) is used to estimate the cooling rate in the later stages of the thermal history (after garnet growth); values 4–40° C/Ma are consistent with the shape of the Fe-diffusion gradients in the clinopyroxene. The extensive thermal history recorded by JJG41, including probable melt involvement at ca. 1400° C, demonstrates the complex evolution of rocks within the mantle. Whilst the notion of formation of mantle eclogites from subducted oceanic crust has become fashionable, it is clear that tracing eclogite geochemical and P-T characteristics backwards from their nature at the time of xenolith eruption, through high-temperature mantle events to the characteristics of the original subducted oceanic crust, will be very complex.  相似文献   

11.
Petrographic, chemical and mineralogical data are presented on the Oetztal eclogites and their co-existing minerals. The available evidence indicates that they constitute the metamorphic derivates of an original gabbroic rock, the plagioclase and clinopyroxene of which reacted to form the garnet, omphacite and kyanite components of the eclogites. According to the available subsolidus experimental data these reactions are believed to have taken place in a 6–10 kb pressure range at about 550°–750° C.  相似文献   

12.
The water-undersaturated melting relationships of a mafic, peralkaline, potassic madupite (with about 3% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been studied at pressures up to 30 kb. At low pressures (<5 kb) leucite is the dominant liquidus phase, but it is replaced at higher pressures by clinopyroxene plus olivine (<5–7 kb), clinopyroxene (7–12.5 kb), clinopyroxene plus minor spinel (12.5–17.5 kb), and clinopyroxene alone (17.5–> 30 kb). At all pressures there is a reaction relationship with falling temperature between melt, olivine and probably clinopyroxene to yield phlogopite. Apatite is stable within the melting interval to pressures above 25 kb. Electron microprobe analyses demonstrate that the clinopyroxene is diopsidic, with low aluminium and titanium contents. Pressure has relatively little effect on the composition of the pyroxene. Phlogopite is also aluminium-poor and has only a moderate titanium content. The experimental results indicate that madupite is not the partial melting product of hydrous lherzolite or garnet lherzolite in the upper mantle and it seems improbable that it is derived by melting of mantle peridotite with a mixed H2O-CO2 volatile component. Madupite could, however, be the partial melting product of mica-pyroxenite or mica-olivine-pyroxenite in the upper mantle. It is pointed out that the chemistry of some potassium-rich volcanics may have been affected by volatile transfer and other such processes during eruption and that experimental studies of material affected in this way have little bearing upon the genesis of potassic magmas. Finally, the experimental results enable constraints to be placed upon the P-T conditions of the formation of richterite-bearing mica nodules found in kimberlites and associated rocks. Maximum conditions are 25 kb and 1,100 ° C.  相似文献   

13.
Three major types of xenoliths, namely, dunite, spinel lherzolite, and pyroxenite suites, occur. The spinel lherzolite suite [ol: Fo86–92] is more refractory than the pyroxenite suite [Fo71–85], and is composed of olivine, orthopyroxene, Cr-diopside, and spinel. Spinel lherzolites represent metasomatically modified mantle residues that constitute the lithosphere underneath Oahu. Metasomatism has induced significant heterogeneity in terms of [Na]cpx in the spinel lherzolitic lithosphere: compared to other vents, Salt Lake xenoliths are anomalously high in [Na]cpx. The fluids responsible for such a process may have been released after crystallization of the hydrous phases in pyroxenite suite veins intrusive into the spinel lherzolites.The pyroxenite suite rocks range from clinopyroxenites, wehrlites, websterites, to lherzolites and a rare dunite. Garnet generally occurs as a secondary phase forming reaction rims around spinel or exsolved blebs in clinopyroxene. Phlogopite and amphibole are common. The garnet-bearing pyroxenite suite rocks last equilibrated in the mantle at 1000°–1150° C and 16–25 kb (50–75 kms depth). Similar temperature range is recorded by the spinel lherzolite suite and rare plagioclase lherzolites. This P-T path is significantly hotter than a calculated conductive geotherm indicating that the lithosphere was substantially warmed up by passing Hawaiian magmas.Contribution No. 585, Geosciences Program, University of Texas at Dallas  相似文献   

14.
The transition from feldspar amphibolite to eclogite is a very wide P-T field that extends from some-where close to 5 kbar where the garnet-amphibole pair starts to appear, to 10–20 kbar at albite-out reaction, then up to 25–30 kbar where an hydrated phase such as amphibole can be stable with pyroxene and garnet. Thus the assemblage garnet (py)+ amphibole (tr)+epidote (cz)±plagioclase (ab)±clinopyroxene (di)±quartz (qz)±fluid is commonly reported in a large number of metamorphic terrains. These mineral phases are complex solid-solutions which adapt to variations in environmental conditions mainly by means of continuous reactions. The reaction space, introduced by. Thompson in 1982a, provides a very elegant and powerful tool to approach these high-variance assemblages. The reactions:
  相似文献   

15.
An extensive suite of hydrothermally altered rocks were recovered byAlvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23–24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02–10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, <10% of the clinopyroxene is altered, and there is no trace metal mobility; (ii) type II: plagioclase (An10–30)+amphibole (actinolite-magnesio-hornblende) +chlorite+sphene, >20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of thereaction zone where compositions of hydrothermal fluids actively venting at the seafloor today become fixed. This prediction necessitates interaction between hydrothermal fluids and intersertal glass and/or mafic phases, in addition to plagioclase, in order to produce the observed range in vented fluid pH.  相似文献   

16.
High-density CO2 inclusions in the Colorado Front Range   总被引:1,自引:0,他引:1  
A fluid density in an inclusion is commonly observed to be too low for the P-T estimates for the postulated time of trapping, and is generally attributed to a fluid loss during the uplift process. It is more difficult to explain a fluid density which is too high. In the 1700 m.y. Front Range migmatites, such high densities occur in some of CO2 inclusions which were deduced to have formed during the migmatization episode. The peak P-T estimates for migmatization in the Front Range are 4–6 kb and 650°–700° C (in sillimanite field) but pressures required to form the most dense inclusions are >7.6 kb (in kyanite field). The high density is not likely to be a relic of a higher pressure condition earlier than the main migmatization episode for the following reasons: (a) no kyanite (or any other relic high pressure phase) has been found in the Precambrian Front Range; (b) the high density inclusions are rare in zones with least signs of deformation and melting (paleosomes and quartz inclusions within feldspar grains) which instead contain relatively undisturbed early inclusions; (c) high density inclusions with Th <–30° C are associated with heavily altered plagioclase caused by hydrothermal activity which was a late event in leucosome formation. Further, there is evidence for post-entrapment change(s) in density: an intragranular trail in quartz contains CO2 inclusions that exhibit almost the whole range in Th (–40 to +24° C) as displayed by the entire population of the early CO2 inclusions (–66 to +30° C). The density of an inclusion in the trail is not related to inclusion size but to the position of the inclusion relative to apparent micro-shear zones crossing the CO2 trail. A change to a higher density (=a smaller volume) could have resulted from an initially isobaric cooling path which intersects CO2 isochores with increasingly higher densities. Additional excess pressure may have resulted from overthrusting. However, because high density inclusions occur selectively in the zones in which plagioclase shows alteration indicating a high and because there is a correlation between shear zones and high density inclusions, it is postulated that local hydrolytic weakening of quartz was necessary for the decrease of inclusion volume which occurred during deformation. The localized deformation may also result in an excess pressure. However, the introduction of a small amount of H2O into these inclusions as a possible cause of high density inclusions cannot be ruled out.  相似文献   

17.
Island arcs, active and passive margins are the best tectonic settings to generate fertile reservoirs likely to be involved in subsequent granitoid genesis. In such environments, greywackes are abundant crustal rock types and thus are good candidates to generate large quantities of granitoid magmas. We performed a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt% biotite (Bt) (X Mg45), and 41 wt% quartz (Qtz). Eighty experiments, averaging 13 days each, were carried out using a powder of minerals (5m) and a glass of the same composition. The multivariant field of the complex reaction Bt+Pl+QtzGrt/Crd/Spl+ Opx+Kfs+melt limited by the Opx-in and Bt-out curves, is located between 810–860°C at 100 MPa, 800–850°C at 200 MPa, 810–860°C at 300 MPa, 820–880°C at 500 MPa, 860–930°C at 800 MPa, 890–990°C at 1000 MPa, and at a temperature lower than 1000°C at 1500 and 1700 MPa. The melting of biotite+plagioclase+ quartz produced melt+orthopyroxene (Opx) +cordierite (Crd) or spinel (Spl) at 100, 200 and 300 MPa, and melt+orthopyroxene+garnet (Grt) from 500 to 1700 MPa (+Qtz, Pl, FeTi Oxide at all pressures). K-feldspar (Kfs) was found as a product of the reaction in some cases and we observed that the residual plagioclase was always strongly enriched in orthoclase component. The P-T surface corresponding to the multivariant field of this reaction is about 50 to 100°C wide. At temperatures below the appearance of orthopyroxene, biotite is progressively replaced by garnet with increasing P. At 850°C, we observed that (1) the modal proportion of garnet increases markedly with P; (2) the grossular content of the garnet increases regularly from about 4 mol% at 500 MPa to 15 mol% at 2000 MPa. These changes can be ascribed to the reaction Bt+Pl+Qtz Grt+Kfs+melt with biotite +plagioclase+quartz on the low-P side of the reaction. As a result, at 200 MPa, we observed the progressive disappearance of biotite without production of orthopyroxene. These experiments emphasize the importance of this reaction for the understanding of partial melting processes and evolution of the lower continental crust. Ca-poor Al-metagreywackes represent fertile rocks at commonly attainable temperatures (i.e. 800–900°C), below 700 MPa. There, 30 to 60 vol.% of melt can be produced. Above this pressure, temperatures above 900°C are required, making the production of granitoid magmas more difficult. Thin layers of gneisses composed of rothopyroxene, garnet, plagioclase, and quartz (±biotite), interbedded within sillimanite-bearing paragneisses, are quite common in granulite terrains. They may result from partial melting of metagreywackes and correspond to recrystallized mixtures of crystals (+trapped melt) left behind after removal of a major proportion of melt. Available experimental constraints indicate that extensive melting of pelites takes place at a significantly lower temperature (850°C±20) than in Al-metagreywackes (950°C±30), at 1000 MPa. The common observation that biotite is no longer stable in aluminous paragneisses while it still coexists commonly with orthopyroxene, garnet, plagioclase and quartz, provides rather tight temperature constraints for granulitic metamorphism.Abbreviations Ab albite - alm almandine component in garnet - Als aluminum silicate - An anorthite - Ap apatite - Bt biotite - Cal calcite - Crd cordierite - Crn corundum - En enstatite - Fl fluid phase - Fs ferrosilite - Ged gedrite - Gl glass - Grs Grossular - grs grossular component in garnet - Grt garnet - Hc hercynite - Hem hematite - Ilm ilmenite - Kfs K-feldspar - M melt - Mag magnetite - Ms muscovite - Opx orthopyroxene - Or orthoclase - Phl phlogopite - Pl plagioclase - Po Pyrrhotite - Prp pyrope - prp pyrope component in garnet - Otz quartz - Rt rutile - Sa sanidine - Sil sillimanite - Spl spinel - St staurolite - Ti-Mag titano-magnetite - W water  相似文献   

18.
Summary A detailed electron microprobe study of the mineralogy of fifteen eclogites from the Moses Rock kimberlitic dyke, Utah, has demonstrated complexity in compositional zoning of minerals. Most of the eclogites examined are of the almandine-jadeite type and zonal and irregular variation in grossular content of garnet and acmite, jadeite and diopside-hedenbergite content of pyroxene produce large uncertainties in temperature estimates based on Fe/Mg partitioning between garnet and clinopyroxene. Zoning pattems of increasingX Mg in both clinopyroxene and garnet, and increasingX Jd in clinopyroxene, suggest the introduction of Mg and Na throughout the evolution of these essentially bimineralic assemblages. Averaged data yield temperatures from 340°C to 500°C at 10 kbar for compositions of rims of coexisting garnet and clinopyroxene. Two samples contain pyrope-rich gamets but coexisting pyroxenes are extremely magnesian and temperatures of equilibration of both primary omphacite-pyrope and secondary omphacite-almandine/pyrope-chlorite are only slightly higher (500–650° at 10 kbar) than those for almandine jadeite eclogites and estimates overlap with those of some examples of the latter type. Unlike the majority of almandine-jadeite eclogites, two examples contain garnets with almandine-cores and pyrope-rich rims without accompanying variation in grossular content. The simple interpretation of these samples as evidence of garnet growth during prograde metamorphism is precluded by complex zoning in coexisting clinopyroxene. The eclogites provide evidence for the presence of a metamorphic terrane including rocktypes resembling those of blueschist terranes beneath the Colorado Plateau but do not permit deduction of theP,T path by which such rocktypes reached theirP,TT-conditions (10 kbar, 400–600°C) of metamorphism.
Petrogenese von Eklogit-Einschlüssen im Moses Rock Dyke, Utah, U.S.A.
Zusammenfassung Eine detaillierte Studie der Mineralogie von fünfzehn Eklogiten vom Moses Rock Kimberlit-Dyke (Utah) mittels mikrosonde zeigte komplexe Zonierung der Zusammensetzung der Minerale. Die meisten der untersuchten Eklogite gehören zum Almandin-Jadeit-Typ; zonare und irreguläre Variationen der Grossularkomponente der Granate und der Akmit-, Jadeit- und der Diopsid-Hedenbergitkomponenten der Pyroxene resultieren in großen Unsicherheiten bei Temperaturabschätzungen auf der Basis von Fe/Mg-Verteilungen zwischen Granat und Clinopyroxenen. Durchschnittswerte von Randzonen koexistierender Granate und Clinopyroxene ergeben Temperaturen von 340°C bis 500°C für 10 kb.Zwei Proben enthielten pyropreichen Granat, die koexistierenden Clinopyroxene sind extrem Mg-reich und die Gleichgewichtstemperaturen sowohl von primärem Omphacit-Pyrop als auch von sekundärem Omphacit-Almandin/Pyrop-Chlorit sind nur geringfügig höher (500°–600°C bei 10 kb) als die für Almandin-Jadeit-Eklogite; die Schätzungen überlappen mit denen von einigen Proben des letzteren Typs.Im Gegensatz zur Mehrheit der Almandin-Jadeit-Eklogite enthalten zwei Proben Granate mit almandinreichen Kernen und pyropreichen Rändern ohne gleichzeitige Schwankungen im Grossulargehalt. Eine einfache Interpretation dieser als Beweis für Granatwachstum während prograder Metamorphose muß jedoch ausgeschlossen werden, da die koexistierenden Clinopyroxene komplex zoniert sind.Die Eklogite können als Beweis angesehen werden für das Vorhandensein eines metamorphen Bereichs unter dem Colorado-Plateau, der Gesteinstypen enthält, die denen der Glaukophanschieferfacies ähneln. Es können jedoch keine Aussagen über denP-T-Weg gemacht werden, über den diese Gesteinstypen ihre heute feststellbarenP-T-Bedingungen (400°–600°C, 10 kb) erreicht haben.


With 7 Figures  相似文献   

19.
Near 68° N the Scandinavian Caledonides are composed of 3 tectonic domains each of which has a different tectonostratigraphy. The lower 2 domains can be related stratigraphically to Scandinavia prior to Caledonian deformation, whereas the highest domain, the Middle Köli Nappe Complex (MKNC) represents a fore-arc accretionary complex that was accreted to Scandinavia during Caledonian deformation. Subsequent to accretion, the flyschoid sediments that dominate the MKNC were metamorphosed to the amphibolite facies. In the area covered by this study, the MKNC is composed of two nappes, a lower Langvatn nappe and an upper Marko nappe, each of which has a unique early metamorphic history. Pelitic mineral assemblages in the Marko nappe constrain the peak P-T to be: 625°<T<775° C and P>7.0 kbars whereas ultramafic mineral assemblages in the lower Langvatn nappe constrain its peak temperature to be <580° C. P-T estimates from garnet-biotite and garnet-plagioclase geothermobarometry for both nappes overlap; ranging from 528° C and 6.6 kbars to 620° C and 8.8 kbars, with an average of 567±32° C and 8.0±0.9 kbar.Analysis of garnet zonation profiles from low variance pelitic assemblages from the Marko nappe using the Gibbs method of Spear and Selverstone (1983) suggests that P-T paths showing cooling (37–125° C) and decompression (20–1700 bars) were followed during the development of the outer part of garnet zonation profiles. The slope of these retrograde P-T paths is approximately 15 bars/° C. Because of the high variance of pelitic assemblages from the Langvatn nappe P-T paths have not been determined.The retrograde cooling rate of the Marko nappe has been estimated by numerical modeling of garnet zonation profiles that are interpreted to have formed by volume diffusion during retrograde cooling. This modeling suggests that the Marko nappe cooled very rapidly (25–100° C/m.y.) between the metamorphic peak and the temperature at which cation-exchange reactions closed. The form of Langvatn nappe garnet zonation profiles suggests that it did not undergo this rapid cooling.The cooling rate estimated for the Marko nappe is probably too high to be produced by unroofing alone and may be the result of late metamorphic thrusting and imbrication within the MKNC during which the cooler Langvatn nappe was underthrust beneath the warmer Marko nappe. The metamorphic peak of the Marko nappe therefore predates the peak of the Langvatn nappe. The peak P-T of the Langvatn nappe and the P-T recorded by geothermobarometry (570° C, 8.0 kbar) approximates the conditions under which the two nappes were juxtaposed.  相似文献   

20.
Experimental study of natural alkalic lava compositions at low pressures (pO2QFM) reveals that crystallization of primitive lavas often occurs in the sequence olivine, plagioclase, clinopyroxene, nepheline without obvious reaction relation. Pseudoternary liquidus projections of multiply saturated liquids coexisting with plagioclase (±olivine±clinopyroxene±nepheline) have been prepared to facilitate graphical analysis of the evolution of lava compositions during hypabyssal cooling. Use of (TiAl2)(MgSi2)–1 and Fe3+ (Al)–1 exchange components is a key aspect of the projection procedure which is succesful in reducing a wide range of compositions to a systematic graphical representation. These projections, and the experiments on which they are based, show that low pressure fractionation plays a significant role in the petrogenesis of many alkalic lava suites from both continental and oceanic settings. However, the role of polybaric fractionation is more evident in the major element chemistry of these lava suites than in many tholeiitic suites of comparable extent. For example, the lavas of Karisimbi, East Africa, show a range of compositions reflecting a polybaric petrogenesis from primitive picrites at 1360° C/18 kb and leading to advanced low pressure differentiates. Evolved leucite-bearing potassic members of this and other suites may be treated in a nepheline-diopside-kspar (+olivine+leucite) projection. Compositional curvature on the plagioclase+clinopyroxene+olivine+leucite cotectic offers a mechanism to explain resorption of plagioclase in alkalic groundmass assemblages and the incompatibility of albite and leucite. This projection is useful for evaluating the extent of assimilation of the alkalic portions of crustal granulites. Assimilation appears to have played some role in the advanced differentiates from Karisimbi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号