首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Understanding the geochemical behavior of chalcophile elements in magmatic processes is hindered by the limited partition coefficients between sulfide phases and silicate melt, in particular at conditions relevant to partial melting of the hydrated, metasomatized upper mantle. In this study, the partitioning of elements Co, Ni, Cu, Zn, As, Mo, Ag, and Pb between sulfide liquid, monosulfide solid solution (MSS), and hydrous mantle melt has been investigated at 1200 °C/1.5 GPa and oxygen fugacity ranging from FMQ−2 to FMQ+1 in a piston-cylinder apparatus. The determined partition coefficients between sulfide liquid and hydrous mantle melt are: 750–1500 for Cu; 600–1200 for Ni; 35–42 for Co; 35–53 for Pb; and 1–2 for Zn, As, and Mo. The partition coefficients between MSS and hydrous mantle melt are: 380–500 for Cu; 520–750 for Ni; ∼50 for Co; <0.5 for Zn; 0.3–6 for Pb; 0.1–2 for As; 1–2 for Mo; and >34 for Ag. The variation of the data is primarily due to differences in oxygen fugacity. These partitioning data in conjunction with previous data are applied to partial melting of the upper mantle and the formation of magmatic-hydrothermal Cu–Au deposits and magmatic sulfide deposits.I show that the metasomatized arc mantle may no longer contain sulfide after >10–14% melt extraction but is still capable of producing the Cu concentrations in the primitive arc basalts, and that the comparable Cu concentrations in primitive arc basalts and in MORB do not necessarily imply similar oxidation states in their source regions.Previous models proposed for producing Cu- and/or Au-rich magmas have been reassessed, with the conclusions summarized as follows. (1) Partial melting of the oxidized (fO2 > FMQ), metasomatized arc mantle with sulfide exhaustion at degrees >10–14% may not generate Cu-rich, primitive arc basalts. (2) Partial melting of sulfide-bearing cumulates in the root of thickened lower continental crust or lithospheric mantle does not typically generate Cu- and/or Au-rich magmas, but they do have equivalent potential as normal arc magmas in forming magmatic-hydrothermal Cu–Au deposits in terms of their Cu–Au contents. (3) It is not clear whether partial melting of subducting metabasalts generates Cu-rich adakitic magmas, however adakitic magmas may extract Cu and Au via interaction with mantle peridotite. Furthermore, partial melting of sulfide-bearing cumulates in the deep oceanic crust may be able to generate Cu- and Au-rich magmas. (4) The stabilization of MSS during partial melting may explain the genetic link between Au-Cu mineralization and the metasomatized lithospheric mantle.The chalcophile element tonnage, ratio, and distribution in magmatic sulfide deposits depend on a series of factors. This study reveals that oxygen fugacity also plays an important role in controlling Cu and Ni tonnage and Cu/Ni ratio in magmatic sulfide deposits. Cobalt, Zn, As, Sn, Sb, Mo, Ag, Pb, and Bi concentrations and their ratios in sulfide, due to their different partitioning behavior between sulfide liquid and MSS, can be useful indices for the distribution of platinum-group elements and Au in magmatic sulfide deposits.  相似文献   

2.
徐九华  谢玉玲 《岩石学报》2007,23(1):117-124
Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.  相似文献   

3.
Quaternary basanitic to nephelinitic volcanoes from Tahalra (western Ahaggar, southern Algeria) contain numerous Mg-ilmenite and amphibole-rich inclusions (±olivine, ±salite) and spinel lherzolite (±pargasite) inclusions associated with kaersutite megacrysts. On the basis of petrological, geochemical and Sr isotopic study of representative xenoliths (including a composite nodule defined as a vein cross-cutting peridotite) and lavas, we attribute the series of amphibole-rich xenoliths and megacrysts to segregation under upper mantle conditions from a hydrous high Ti and LREE melt geochemically similar to the Quaternary basanite but isotopically different. Amphibole-rich rocks and megacrysts are the results of magmatic events (less than 40 Ma) probably contemporaneous with the various pre-Quaternary volcanic phases recognized in Ahaggar. The amphibole-rich veins and the Quaternary lavas have a garnet lherzolitic source enriched in REE (7 to 9 times chondritic in LREE, 2 times in HREE). This enrichment probably results from former metasomatic events unrelated to the recent magmatic history. Melts from which these veins precipitated within upper mantle peridotite also account for mantle enrichment processes; they induced a local partial melting and contact metasomatism (pargasitization). The upper mantle beneath the volcanic areas of Ahaggar is veined and hydrous, and consequently lightened: thus, the uplift of basement may be the isostatic response to magmatism and related metasomatism and therefore the result of the Cenozoïc igneous activity.  相似文献   

4.
东天山地区的二叠纪玄武岩沿着区域的北东东向断裂呈脉状分布,吐哈盆地玄武岩的40Ar-39Ar坪年龄为298.2±3.8Ma,为早二叠世,与前人的玄武岩年龄结果在误差范围内一致。可能与东天山地区二叠纪岩浆铜镍矿床镁铁-超镁铁岩有密切的成因联系。吐哈玄武岩的主微量成分显示其为岛弧拉斑、大陆弧玄武岩,轻稀土富集和Nb、Ta负异常,指示源区可能经历过俯冲作用的改造。吐哈盆地二叠纪玄武岩含有新鲜的橄榄石和长石斑晶,橄榄石斑晶中熔融包裹体较发育。熔融包裹体为玻璃质、气相和玻璃质、气相、固相两种类型。包裹体中不透明矿物主要为磁铁矿,说明捕获包裹体时岩浆的氧逸度和Fe含量较高。熔融包裹体分为高MgO和低MgO含量两种。高MgO含量的包体同时具有低SiO_2、低微量和稀土元素含量的特征,可能为地幔高部分熔融的产物,且经历过深部演化程度较弱。该高MgO熔体的微量元素显示Nb、Ta亏损的特征,具有N-MORB特征的微量和稀土元素分配模式,预示该熔体为受到俯冲交代的地幔熔融形成。熔融包裹体相对玄武岩具有低的Th和Ta含量、相对弱的Nb和Ta的负异常的特征,指示熔融包裹体的成分经受改造程度低于玄武岩,暗示可能为经历过较少后期作用改造的相对原始的熔体。熔体中Cu含量(12.4×10~(-6)~299×10~(-6))在正常玄武质岩浆含量范围内,而Ni含量(236×10~(-6)~697×10~(-6))高于高镁溢流科马提岩和洋中脊玄武岩。该Cu、Ni含量略显解耦的熔体可能代表了经历过深部少量的硫化物熔离,带走小部分Cu和Ni等成矿元素之后所捕获的岩浆。如果将该熔体视为东天山地区二叠纪岩浆铜镍硫化物矿床的母岩浆,该母岩浆中Ni含量相对较高可能是岩浆铜镍硫化物矿床中矿石的Ni/Cu比值大多大于1.0的主要因素。  相似文献   

5.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

6.
Ni、Cu和PGE具有不同于其他微量元素的特殊的地球化学性质,这些特殊的性质使得它们在幔源岩浆起源和演化以及岩浆硫化物矿床的成因研究中具有不可替代的作用。在S不饱和的条件下,Ni、Os、Ir和Ru具有相容元素的特性,而Cu和Pd是强不相容元素,因此,它们在玄武岩浆分离结晶过程中常常发生分异。一旦体系达到S饱和,这些元素则会强烈地进入硫化物熔浆,特别是PGE具有极高的硫化物熔浆/硅酸盐熔浆分配系数,极微量的硫化物熔离便可导致残余岩浆中PGE的显著亏损,因此,PGE是玄武岩浆硫化物熔离作用最敏感的示踪元素。硫化物熔离和成矿实质上是幔源岩浆特殊演化过程的结果,所以,Ni,Cu和PGE的特殊性质可用来探讨岩浆硫化物成矿的关键控制因素。Ni、Cu和PGE具有不同的单硫化物固溶体/硫化物熔浆分配系数,因此,它们也是硫化物熔浆结晶分异的重要示踪元素。本文试图从Ni、Cu和PGE地球化学性质和行为入手,并借助一些研究实例,对它们在幔源岩浆起源和演化以及岩浆硫化物矿床成因研究中的示踪意义进行系统介绍。  相似文献   

7.
ABSTRACT

The lithospheric mantle beneath the South China Block (SCB) underwent a dramatic transformation from depleted to enriched during late Mesozoic. With a view to deeply understand this process, here we investigate the Mesozoic basalts and their melt inclusions from the Daoxian and Ningyuan regions within the central SCB. The geochemical features of the melt inclusions in these basalts suggest that these rocks originated from the lithospheric mantle enriched through interaction with K-rich aqueous fluids released from subducted Palaeo-Pacific oceanic sediments, whereas the Ningyuan basalts were mainly derived from the asthenospheric mantle source. Geochemical modelling indicates that the Daoxian basalts were generated from 15%-25% of partial melting of garnet lherzolite, whereas the Ningyuan basalts originated from 10%-20% of partial melting of garnet pyroxenites. Our data, combined with those from other Jurassic basalts suggest a temporal evolution of the SCB mantle sources during the Late Mesozoic. Diverse crust–mantle interactions through mixing of the asthenospheric melts with variable proportions of subducted Palaeo-Pacific oceanic sediments might account for the spatial heterogeneity of mantle sources observed beneath the SCB. The transition from Tethyan tectonic realm to the Palaeo-Pacific tectonic regime might have played a significant role in the transformation of the lithospheric mantle beneath the SCB.  相似文献   

8.
LORAND  J P. 《Journal of Petrology》1989,30(4):987-1015
Pyroxenite layers in the orogenic spinel lherzolite massifsof Ari?ge are porphyroclastic textured and range in compositionfrom spinel websterite to garnet clinopyroxenite. Each pyroxenitetype forms individual layers or occurs as part of compositelayers in which the Opx/Cpx and Sp/Gt ratios decrease from marginsto core. They are interpreted as crystalline segregations separatedby flow crystallization from continental tholeiites en routeto the surface. The primary magmatic phases consist of Al-richpyroxenes, together with a minor amount of spinel, which startedto crystallize at 1400?C and 20–22 kb pressure; the pyroxeneshave locally survived plastic strains and subsolidus rccrystallizationsand now occur in the form of clinopyroxene and orthopyroxenemegacrysts displaying unmixing features. Although the differentiated silicate liquid was fully expelledduring the flow crystallization process, the layered pyroxeniteshave concentrated the highly incompatible elements S and Cuand locally display significant chalcophile platinum-group elementenrichment (Pd, Pt). Cu and S behave coherently over the wholerange of pyroxenite composition; their highest concentrationsare found in the thinnest websterite layers or at the marginof composite layers. Microscopic investigation of 214 polishedthin sections shows these elements to be present as accessoryCu-Fe-Ni sulfides interstitial among the silicate phase or formingdiscrete bodies included in the relic pyroxene megacrysts. Allthese features indicate the presence of a sulfide liquid, immisciblewith the silicate magma, during the crystallization of the layeredpyroxenites. Sulfide liquid immiscibility probably occurredin response to thermal contrast between the pyroxenites andthe cooler surrounding peridotites. It is proposed that the megacryst-hosted sulfide inclusionswere trapped as linear arrays arranged on host megacryst growthplanes. Due to the slow cooling and complex unmixing historyof the megacrysts, these arrays have been transformed into coarse,isolated sulfide inclusions by subsolidus migration and spheroidizationprocesses. They started to crystallize at T = 1200?C as monosulfidesolid solution (MSS), probably coexisting with a minor amountof Ni- and Cu-rich sulfide liquid down to r=900?C. The reconstructionof the bulk chemistry of each individual inclusion reveals significantbetween-inclusion variations of Cu/Ni+ Fe and Ni/Fe ratios,which would result from strain-induced immobilization of theseliquids. On cooling, the high-temperature MSS has decomposedbelow 230?C into Ni-rich pyrrhotite, nickeliferous pentlandite,chalcopyrite and minor pyrite. The post-magmatic history ofthe interstitial sulfide grains was not unlike that of the inclusions,except at near-surface temperatures where the primary sulfidesresulting from unmixing of MSS have been partly altered intosecondary sulfides by serpentinizing aqueous fluids. In spite of these post-magmatic alterations, the inclusionsand the interstitial sulfide phases are remarkably homogeneousas regards their bulk Ni/Cu ratio, which is close to 3. Thisvalue is characteristic of sulfide separated from primary ratherthan partially differentiated tholeiitic melts. It is thus concludedthat the continental tholeiite parent to the layered pyroxeniteswas saturated with sulfides when it left its mantle source regioaIn this aspect, it would not be different from MORBs which containsimilar sulfide compositions. In both cases, sulfide fractionationcannot be ignored in models for chalcophile trace element fractionationduring initial evolution of these magmas.  相似文献   

9.
 Sulfide inclusions in diamonds may provide the only pristine samples of mantle sulfides, and they carry important information on the distribution and abundances of chalcophile elements in the deep lithosphere. Trace-element abundances were measured by proton microprobe in >50 sulfide inclusions (SDI) from Yakutian diamonds; about half of these were measured in situ in polished plates of diamonds, providing information on the spatial distribution of compositional variations. Many of the diamonds were identified as peridotitic or eclogitic from the nature of coexisting silicate or oxide inclusions. Known peridotitic diamonds contain SDIs with Ni contents of 22–36%, consistent with equilibration between olivine, monosulfide solid solution (MSS) and sulfide melt, whereas SDIs in eclogitic diamonds contain 0–12% Ni. A group of diamonds without silicate or oxide inclusions has SDIs with 11–18% Ni, and may be derived from pyroxenitic parageneses. Eclogitic SDIs have lower Ni, Cu and Te than peridotitic SDIs; the ranges of the two parageneses overlap for Se, As and Mo. The Mo and Se contents range up to 700 and 300 ppm, respectively; the highest levels are found in peridotitic diamonds. Among the in-situ SDIs, significant Zn and Pb levels are found in those connected by cracks to diamond surfaces, and these elements reflect interaction with kimberlitic melt. Significant levels of Ru (30–1300 ppm) and Rh (10–170 ppm) are found in many peridotitic SDIs; SDIs in one diamond with wustite and olivine inclusions and complex internal structures have high levels of other platinum-group elements (PGEs) as well, and high chondrite-normalized Ir/Pd. Comparison with experimental data on element partitioning between crystals of monosulfide solid solution (MSS) and sulfide melts suggests that most of the inclusions in both parageneses were trapped as MSS, while some high-Cu SDIs with high Pd±Rh may represent fractionated sulfide melts. Spatial variations of SDI composition within single diamonds are consistent with growth histories shown by cathodoluminescence images, in which several stages of growth and resorption have occurred within magmatic environments that evolved during diamond formation. Received: 5 July 1995 / Accepted: 21 February 1996  相似文献   

10.
It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs. However, the location of carbon storage in Earth’s interior and the reasons for carbon enrichment remain unclear. In this study, we report CO2-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area, Hainan Province, which may shed some light on the carbon enrichment process in the lithospheric mantle. We also present ...  相似文献   

11.
江苏六合新生代玄武岩中地幔捕虏体的硫化物相研究   总被引:13,自引:3,他引:10  
徐九华  储雪蕾 《岩石学报》2000,16(4):492-498
江苏六合一带碱性玄武岩中的出露有以尖晶石二辉橄榄岩为主的地幔捕虏体,这些地幔矿物中普遍有硫化物相出现:(1)被寄主矿物捕获的早期硫化物颗粒。(2)产于矿物晶粒边界或次生裂隙充填物,(3)硫化物包裹体,包括单相硫的包裹体、硫化物-玻璃两相熔体包裹体和CO/2-硫化物-玻璃(含硅酸盐子矿物)的多相包裹体,电子探针分析表明,硫化物包裹体比例隙中硫化物具有更高的相对Fe和S含量,较低的Ni含量。硫化物包裹  相似文献   

12.
Integrated geochemical and Sr–Nd–Pb isotopic studies of the Early Jurassic Nandaling flood basalts (NFB) in the Yanshan belt, northern margin of the North China Craton (NCC), are presented in this paper. These sub-alkaline basalts evolved from a more magnesium-rich parental magma through fractional crystallization of olivine and clinopyroxene. The primitive magma of the NFB originated from 2–5% partial melting of spinel to garnet transitional peridotite at about 70–80 km depth in the Mesozoic lithosphere mantle. The NFB contain a distinctive lithospheric component, characterized by Nb (Ta), Th, U and Ti depletions, LREE enrichments, moderate Sr, and low Nd and Pb initial isotopic ratios, as a result of an interaction between lower crust (15–25%) and primitive magma evoked by magmatic underplating at crust–mantle boundary. The Early Jurassic NFB extruded in an intraplate extensional setting related to post-orogenic collapse in the northern margin of the NCC, indicating an event of lithospheric modification earlier than that in the southern margin (Early Cretaceous). The temporal similarity of the Jurassic–Cretaceous mantle-derived mafic rocks to lower crust replacement, and the decoupling of surface shortening with lithospheric thinning during the Late Jurassic–Early Cretaceous, suggest the important role of magmatic underplating and subsequent crust–mantle interaction accompanied by asthenosphere upwelling on the evolution of the Mesozoic lithosphere of the NCC. The correlation between lithospheric thinning and magmatic underplating may be an important process in continental rifting.  相似文献   

13.
Basalts exposed in the Platta and Tasna nappes (SE Switzerland) derive from the Alpine‐Tethys ocean–continent transitions (OCT) and overlie subcontinental lithospheric mantle (SCLM). We show that the trace element signatures of these basalts differ from mid‐ocean ridge basalts (MORB). Two types of basalts occur in the OCT: a type‐1 showing a ‘garnet signature’ that can be modelled by the partial melting of the SCLM in the spinel stability field and a type‐2 characterized by an enrichment in incompatible elements that can be explained by the mixing between garnet‐pyroxenite‐derived melts and the melting of either a depleted MORB mantle or a refertilized SCLM. Based on the geological and geochemical observations, we propose that the basalts from the Alpine‐Tethys OCTs result from a poly‐phase magmatic system that carries an inherited SCLM signature. These basalts should therefore be referred to as OCT‐basalts rather than as MOR‐basalts.  相似文献   

14.
阿尔山—柴河第四纪碱性玄武岩中地幔捕掳体为尖晶石相的二辉橄榄岩和方辉橄榄岩,方辉橄榄岩数量略多于二辉橄榄岩。采用激光剥蚀等离子体质谱(LA--ICP--MS)对研究区地幔橄榄岩中的单斜辉石和橄榄石等矿物进行了成分分析,结合橄榄岩包体的岩相学、岩石化学的特征,重点探讨了研究区所经历的部分熔融作用和地幔交代作用。结果显示,少数样品的熔融程度5%,大多数样品熔融程度范围为10%~20%,研究区陆下岩石圈地幔性质以难熔、亏损为主要特征。同时也经历了复杂的交代作用改造,交代介质为富挥发组分的硅酸盐熔/流体。与华北克拉通东北缘陆下岩石圈地幔比较,推测研究区遭受破坏和改造的程度较小,并保留有相当量的古老地幔残余。  相似文献   

15.
Concentrations of the platinum-group elements have been determined in several suites of southern African flood-type basalts and mid-ocean ridge basalt (MORB), covering some 3 Ga of geologic evolution and including the Etendeka, Karoo, Soutpansberg, Machadodorp, Hekpoort, Ventersdorp and Dominion magmas. The magmas cover a compositional range from 3.7 to 18.7% MgO, 26–720 ppm Ni, 16–250 ppm Cu, and <1–255 ppb total platinum-group elements (PGE). The younger basalts (Etendeka, Karoo) tend to be depleted in PGE relative to Cu, while most of the older basalts (Hekpoort, Machadodorp, Ventersdorp, Dominion) show no PGE depletion relative to Cu. Further, the younger basalts tend to have lower average Pt/Pd ratios than the older basalts, and the MORBs have lower average Pt/Pd than the continental basalts within the broad groupings of "old" and "young" basalts. This may reflect (1) a decreasing degree of mantle melting through geologic time, and (2) source heterogeneity, in that the MORBs are derived from predominantly asthenospheric mantle, whereas the continental basalts also contain a lithospheric mantle component enriched in Pt. In addition to these factors, some PGE fractionation also occurred during differentiation of the magmas, with Pd showing incompatible behaviour and the other PGE variably compatible behaviour. The examined southern African flood-type basalts and MORB appear to offer limited prospects for magmatic sulfide ores, largely because they show little evidence for significant chalcophile metal depletion that could be the result of sulphide extraction during ascent and crystallization.Editorial responsibility: I. Parsons  相似文献   

16.
谢玉玲  潘琳  徐九华  邱士东  刘玉堂 《新疆地质》2005,23(1):10-13,i001
地幔捕虏体中存在不同产状的熔体包裹体和各种硅酸盐玻璃相,包括主矿物内部的蠕虫状、长圆形、圆形、不规则状包裹体(I型)、边部的连通的管状包裹体(T型)、主矿物边部和粒间的片状熔融体——“浆胞”(C型),三者可见明显过渡关系,它们是地幔流体交代地幔岩石过程中由交代重熔形成的,是研究地幔流体的特征和地幔交代作用的对象之一,从I型、T型到C型,其成分呈规律变化,其中S、Cu、Ni,K、Na含量呈明显的降低趋势.包裹体中玻璃相的成分较主矿物富Si、Al、S、Cu、Ni、K和Na,再加上C02包裹体的发现,表明地幔流体的成分富碱金属、Si、Al、S、Cu、Ni和CO2,地幔交代作用可以使交代产物中Si、Al含量升高而形成中酸性岩浆,也可由于硫化物熔体聚集而形成矿浆.不同地区的地幔流体性质可能存在差异,这些不同性质的地幔流体町能与不同类型的地幔成矿作用有关.  相似文献   

17.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   

18.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


19.
浙江洋滨黄玉花岗质斑岩的包裹体研究   总被引:1,自引:1,他引:1  
浙江洋滨黄玉花岗质斑岩的石英斑晶中含有大量原生包裹体,作者对其进行了大量的均一温度、盐度、化学成分等方面的测试工作,在此基础上,将这些包裹体划分为熔融包裹体、羟基化硅酸盐熔体—流体包裹体、不均一捕获多相包裹体、液相包裹体(包括高盐度液相包裹体和低盐度液相包裹体)、气相包裹体等五大类型。并按岩浆阶段、岩浆解聚阶段、岩浆/流体不混溶阶段、热液为主阶段探讨了本区包裹体的形成机制,为本区黄玉花岗质斑岩的岩浆成因解释提供了有力的依据  相似文献   

20.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号