首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The abundance and lithic content of ice rafted detritus in glacial North Atlantic sediment cores vary abruptly on millennial time scales that have been correlated to Dansgaard-Oeschger cycles in the Greenland ice cores. There is growing evidence that various ice sheet outlets contributed increased iceberg fluxes at multiple discrete intervals, and the relative timing of iceberg discharges from different sources is important for understanding interactions between oceans and ice sheets. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 20 samples taken at 600 to 700 yr spacing between 10,500 and 22,000 yr B.P., from Orphan Knoll core EW9303-GGC31. Heinrich layers are characterized by a dominant Paleoproterozoic hornblende provenance consistent with published studies. A change in provenance between Heinrich events H2 and H1 indicates contributions of iceberg calving from the Newfoundland and southern Labrador margins. Between H1 and the Younger Dryas interval, Paleoproterozoic ice rafted grains remained dominant. The dominance of Baffin Island (or Greenland?) sources to the ice rafted detritus is ascribed to the retreat of the southern Laurentide ice sheet at about the time of H1—a retreat that isolated Newfoundland and southern Labrador ice from the shelf-slope boundary.  相似文献   

2.
Mantle xenoliths provide direct information about lithospheric evolution and asthenosphere–lithosphere interaction, and therefore precise dating of the host basalts which carried the xenoliths is important. Here we report 40Ar/39Ar geochronology of phlogopite separates from five spinel lherzolite xenoliths collected from the North China Craton (Hannuoba of Hebei Province, Sanyitang of Inner Mongolia Autonomous Region and Hebi of Henan Province), as well as the groundmass of the host basalts. Argon extraction was performed by conventional step heating technique and ultra-violet laser ablation microprobe (UVLAMP) technique. 40Ar/39Ar incremental heating results on groundmass yielded geologically meaningless ages. However, conventional step heating on phlogopites produced Miocene cooling ages, identical to the eruption ages obtained from the K–Ar dating methods of the Hannuoba and Sanyitang basalts. Adopting procedures to exclude potential influence of excess radiogenic Ar from a deep fluid source on a phlogopite separate from lherzolite yielded results with a good agreement of ages suggesting that the argon isotopes are distributed homogenously in this mineral, with no influence of excess argon. Phlogopites from Hebi yield ages between 6.43 and 6.44 Ma which are slightly older than those obtained from K–Ar method on whole-rocks. The discrepancy in the K–Ar ages obtained from the altered whole-rock samples suggests partial loss of 40Ar. As a consequence, phlogopite Ar–Ar ages are considered more accurate than that of the whole-rocks. These results suggest that 40Ar/39Ar chronology of phlogopite provides reliable and precise 40Ar/39Ar ages of host basalts.  相似文献   

3.
During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.4°N, 45.25°W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 55°N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely.  相似文献   

4.
Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite.  相似文献   

5.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

6.
The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the ~(40)Ar/~(39)Ar step wise heating method. The age spectra, ~(39)Ar recoil loss and their controlling factors were investigated systematically. The ~(40)Ar/~(39)Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated ~(40)Ar/~(39)Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the ~(39)Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated ~(39)Ar recoil losses in this study are in the range from 7% to 51%. The ~(39)Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant ~(39)Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. ~(39)Ar recoil losses during ~(40)Ar/~(39)Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs.  相似文献   

7.
The Bakony-Balaton Highland Volcanic Field (BBHVF) is located in the central part of Transdanubia, Pannonian Basin, with over 50 alkali basaltic volcanoes. The basanite plug of Hegyestu erupted in the first phase of volcanic activity. K/Ar and Ar/Ar ages were published for the BBHVF. K/Ar and Ar/Ar ages of the leucite-bearing basanite of Hegyestás were conflicting. This is caused by the special Ar retention feature of leucite in this basanite. K/Ar ages measured in the usual way were 25–45% younger, but after HCl treatment of the rock, or after reducing the baking temperature of the argon extraction line from 250°C to 150°C, they became similar to the Ar/Ar ages. All Ar/Ar determinations were performed after HF treatment. HCl treatment dissolved olivine, nepheline, leucite, magnetite and from 1-1 sample analcime or calcite. K dissolution studies from different locations of Hegyestü have shown that K content is mostly ≈2%, but it may decrease to ≈0.3%. HCl treatment dissolved 28.0–63.5% of the K content. The calculated K concentration for the dissolved part of samples with ~2%K was 4.02-6.42%: showing that leucite is responsible for the low temperature loss of 40Ar(rad). Ar may release at low temperature from very finegrained mineral, or when the Ar release mechanism changes. A 40Ar(rad) degassing spectrum has been recorded in the 55–295°C range of baking temperature and the data were plotted in the Arrhenius diagram. The diagram shows that a change of the structure in the 145–295°C range caused the loss of 40Ar(rad). On fractions of HCl treated rock 7.56±0.17 Ma isochron K/Ar age has been determined. This is regarded as minimum age of eruption and it is similar to the Ar/Ar isochron age (7.78±0.07 Ma).  相似文献   

8.
40Ar/39Ar age spectra and 40Ar/36Ar vs 39Ar/36Ar isochrons were determined by incremental heating for 11 terrestrial rocks and minerals whose geology indicates that they represent essentially undisturbed systems. The samples include muscovite, biotite, hornblende, sanidine, plagioclase, dacite, diabase and basalt and range in age from 40 to 1700 m.y. For each sample, the 40Ar/39Ar ratios, corrected for atmospheric and neutron-generated argon isotopes, are the same for most of the gas fractions released and the age spectra, which show pronounced plateaus, thus are consistent with models previously proposed for undisturbed samples. Plateau ages and isochron ages calculated using plateau age fractions are concordant and appear to be meaningful estimates of the crystallization and cooling ages of these samples. Seemingly anomalous age spectrum points can be attributed entirely to small amounts of previously unrecognized argon loss and to gas fractions that contain too small (less than 2 per cent) a proportion of the 39Ar released to be geologically significant. The use of a quantitative abscissa for age spectrum diagrams is recommended so that the size of each gas fraction is readily apparent. Increments containing less than about 4–5 per cent of the total 39Ar released should be interpreted cautiously. Both the age spectrum and isochron methods of data reduction for incremental heating experiments are worthwhile, as each gives slightly different but complementary information about the sample from the same basic data. Use of a least-squares fit that allows for correlated errors is recommended for 40Ar/36Ar vs 39Ar/36Ar isochrons. The results indicate that the 40Ar/39Ar incremental heating technique can be used to distinguish disturbed from undisturbed rock and mineral systems and will be a valuable geochronological tool in geologically complex terranes.  相似文献   

9.
Yu Wang 《地学学报》2006,18(6):423-431
In eastern China, the Dabie Shan–Su–Lu orogenic belt has been separated by the Tan–Lu sinistral strike–slip fault. Mylonites are exposed along the strike–slip fault system in the southern segment, and along the eastern margin of the Dabie Shan orogenic belt. The country rocks of the mylonites are retrograde UHP eclogites, gneissic granites, muscovite granites and gneisses. The ductile strike–slip shear zone trends 30–40°N (NE30–40°‐trending) and exhibits stretching lineations and nearly vertical, SE‐dipping foliations. Most of the zircon grains separated from mylonites have a weighted average radiometric age of 233 ± 6–225 ± 6 Myr. These data constrain the onset of the Tan–Lu sinistral strike–slip movement and imply that the Tan–Lu sinistral strike–slip motion developed after retrograde UHP metamorphism. The related phengite within the eclogite rocks on the western side of the Tan–Lu fault, with 40Ar/39Ar plateau ages of c. 182–190 Myr, is also deformed and aligned parallel to the almost NE trending stretching lineations. Non‐metamorphosed granites exhibit sinistral strike–slip shearing and indicate that the Tan–Lu fault initially developed after 182–190 Myr. Muscovite collected from the mylonite yields 40Ar/39Ar plateau ages of 162 ± 1–156 ± 2 Myr. The zircon SHRIMP age data, the muscovite 40Ar/39Ar plateau ages, together with structural and petrological field information support the interpretation that the Tan–Lu strike–slip fault was not related to the Yangtze–north China plates collision, but corresponded to the formation of a NE‐trending tectonic framework in eastern China starting c. 165–160 Ma.  相似文献   

10.
40Ar/39Ar incremental-release analyses were carried out on whole-rock and constituent white mica (illite)-rich size fractions (0.63–1 to 6.3–20 m) within two very-low grade, penetratively cleaved metatuffs of contrasting anchizonal metamorphic grade (northeastern Rheinisches Schiefergebirge, Federal Republic of Germany). One sample from the upper anchizone displays internally concordant 40Ar/39Ar spectra with plateau ages ranging between ca. 316 and 325 Ma. These are similar to conventional K-Ar ages determined for the whole-rock and size fractions. Together the isotopic results suggest that cleavage formed at ca. 320 Ma during a concomitant very-low grade metamorphism. This is consistent with biostratigraphic controls which suggest that metamorphism and cleavage formation occurred during the Westphalian.A metatuff sample from the middle anchizone records more internally discordant 40Ar/39Ar age spectra with total-gas ages ranging from 366 to 372 Ma. These are ca. 35–45 Ma older than corresponding conventional K-Ar ages, indicating marked recoil-loss of 39Ar occurred during irradiation. Transmission electron microscopy reveals that white mica grains within size fractions from the upper anchizone sample have clearly defined, straight edges whereas those within the middle anchizone samples are embayed and diffuse. This results in an increase in surface/volume ratio and therefore greater susceptibility for recoil-loss of 39Ar in the middle anchizone sample. Grain-edge morphology appears to be a major factor in determining the extent of recoil-loss of 39Ar during 40Ar/39Ar analysis of fine-grained size fractions.  相似文献   

11.
While the offshore post‐Caledonian extensional history of the north Norwegian passive margin is well constrained, the tectonic relationship between onshore and offshore regions is less clear because of limited age constraints on the timing of rifting onshore. 40Ar/39Ar dating of K‐feldspar from hydrothermally altered fault rocks in a Precambrian gneiss complex in northern Norway was used to study the timing of extensional faulting onshore. In addition, 40Ar/39Ar dating of K‐feldspar from the host rock provided insight into the regional rock cooling history prior to brittle deformation. Results indicated a dominant Late Permian–Early Triassic (~265–244 Ma) faulting event and found no evidence for later reactivation, which has been documented offshore. The region cooled to below the closure temperature for 40Ar/39Ar K‐feldspar in the Carboniferous to Early Permian, prior to the main brittle faulting event. 40Ar/39Ar dating of fault zone K‐feldspar products provided a means to date brittle faulting events.  相似文献   

12.
The accuracy and traceability of geochronometers are of vital importance to questions asked by many Earth scientists. The widely applied 40Ar/39Ar geochronometer relies on the co-irradiation of samples with neutron fluence monitors (reference materials) of known ages; the ages and uncertainties of these monitors are critical to our ability to apply this chronometer. Previously, first principles, astronomical and optimisation calibrations have been made. The first principles method for determining the age of monitor minerals is the K-Ar method, which involves measurement of their 40K and 40Ar* abundances. The AQuA (Absolute Quantities of Argon) pipette system, which emits calibrated quantities of 40Ar* via the ideal gas law, was used to calibrate the sensitivity of the system across a range of source pressures and estimate 40Ar* abundances in neutron fluence monitors. These 40Ar abundances were combined with existing 40K abundance data for these monitors. Ages for HD-B1 and MD2 (GA1550) biotite fluence monitors were calculated and combined with intercalibration data for HD-B1 and Fish Canyon sanidine (FCs) to determine ages for FCs. Current results do not have the targeted accuracy when compared with previous calibrations; however, we show how the extensive methodology development presented here can be used towards making reliable future measurements.  相似文献   

13.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

14.
Coesite- and microdiamond- bearing ultra-high pressure (UHP) eclogites in the North Qinling terrane have been widely retrogressed to amphibolites. Previous geochronological studies on these UHP rocks mainly focused on the timing of peak eclogite facies metamorphism. The Kanfenggou UHP metamorphic domain is one of the best-preserved coesite-bearing eclogite occurrences in the North Qinling terrane. In this study, mafic amphibolites and host schists from this domain were collected for 40Ar/39Ar dating to constrain their retrograde evolution. Two generations of amphibole are recognized based on their mineral parageneses and 40Ar/39Ar ages. A first generation of amphibole from garnet amphibolites yielded irregularly-shaped age spectra with anomalously old apparent ages. Isochron ages of 484–473 Ma and initial 40Ar/36Ar ratios of 3695–774 are obtained from this generation of amphibole, indicating incorporation of excess argon. Second generation amphibole occurs in epidote amphibolites yielded flat age spectra with plateau ages of 464–462 Ma without evidence for excess argon. These ages suggest that the amphibolite-facies metamorphism has taken place as early as 484 Ma and lasted until 462 Ma for the North Qinling UHP metamorphic rocks. Phengite from the country-rock schists yielded 40Ar/39Ar plateau ages of 426–396 Ma, with higher phengite Si contents associated with the older the plateau ages. Based on our new 40Ar/39Ar ages and previous zircon UPb geochronological data, we construct a new detailed pressure-temperature-time (P-T-t) path illustrating the retrograde metamorphism and exhumation rate of the North Qinling eclogites and host schists. The P-T-t path suggests that these UHP metamorphic rocks experienced initial medium-to-high exhumation rates (ca. 8.7 mm/yr) during the Early Ordovician (489–484 Ma), which was mainly derived from buoyancy forces. Subsequently, the exhumation rate decreased gradually from ~0.8 to 0.3 mm/yr from 484 to 426 Ma, which was probably governed by extension and/or erosion.  相似文献   

15.
New single‐grain‐fusion muscovite and paragonite 40Ar/39Ar data from eclogite and blueschist units exposed in the Tauern Window, Eastern Alps yield a range of apparent ages from 90 to 23 Ma. These apparent ages are generally older than expected for 40Ar/39Ar cooling ages, given constraints from other geochronological systems such as Rb–Sr and U–Pb. Numerical Ar‐in‐muscovite diffusion models for Tauern Window nappe P–T paths in an open system suggest that 40Ar/39Ar ages should lie between 29 and 24 Ma, and that they should constrain cooling and decompression following the post‐high pressure Barrovian overprint. The measured ranges of apparent 40Ar/39Ar dates suggest that the assumption of open system behaviour is not valid for this region. The local and/or regional generation of fluid during exhumation promoted pervasive recrystallization of high pressure lithologies throughout the Tauern Window to greenschist and amphibolite facies assemblages. The old apparent 40Ar/39Ar white mica dates in all lithologies are therefore interpreted as being due to inefficient removal of grain boundary Ar by the grain boundary fluids during the Barrovian overprint, due to high Ar concentrations or limited connectivity or both. This caused spatially (mm‐scale) and temporally variable fluxes of Ar out of, and probably into, white mica in both metasedimentary and metabasic lithologies.  相似文献   

16.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

17.
In the case of volume diffusion, the closure temperature of a mineral is function of, among other factors, the characteristic diffusion dimension, which can be approximated by the grain size of the mineral analysed for grains smaller than or similar in size to the diffusion domains. The theoretical possibility of single mineral grain size thermochronology had been demonstrated empirically in earlier studies, mostly using biotite. In order to examine the potential of this method, it was tested alongside the widely used multi-mineral 40Ar/39Ar thermochronology. The sample comes from the granitic McLean pluton, in the south section of the Grenville orogeny. Seven grain size separates of biotite (ranging between 90 and 1000 μm), eight size fractions of amphibole (between 63 and 1000 μm), and three size fractions of K-feldspar (250-600 μm) were extracted and dated by the laser step-heating 40Ar/39Ar method. The total gas ages obtained behave as theoretically predicted, with increasing ages for increasing grain sizes, including for K-feldspar, but with the exception of the smallest and the largest grains for biotite and amphibole. The calculated cooling rates are ca. 0.7 °C/Ma for K-feldspar, ca. 2.5 °C/Ma for biotite, and ca. 11 °C/Ma for amphibole, corresponding very well to a monotonic cooling of the McLean pluton. A quick initial thermal re-equilibration with the cooler host-rocks is followed by a much slower cooling on a thermal path parallel to that of the Frontenac Terrain situated immediately to the southeast. The validity of the single mineral grain size thermochronology is demonstrated by comparison with the thermal evolution of the adjacent units and with the cooling history derived from a multi-mineral thermochronology, suggesting that it can be routinely used. The application of this method can be hampered by insufficiently low analytical uncertainties.  相似文献   

18.
Provenance studies of anomalously high-flux layers of ice-rafted detritus (IRD) in North Atlantic sediments of the last glacial cycle show evidence for massive iceberg discharges coming from the Hudson Strait region of the Laurentide Ice Sheet (LIS). Although these so-called Heinrich events (H events) are commonly thought to be associated with abrupt drawdown of the LIS interior, uncertainties remain regarding the sector(s) of this multi-domed ice sheet that conveyed ice through Hudson Strait. In Northern Québec and Labrador (NQL), large-scale patterns of glacial lineations indicate massive ice flows towards Ungava Bay and Hudson Strait that could reflect the participation of the Labrador–Québec ice dome in H events. Here we evaluate this hypothesis by constraining the source of NQL glacial deposits, which provide an estimate of the provenance characteristics of IRD originating from this sector. Specifically, we use 40Ar/39Ar ages of detrital hornblende grains in 25 till samples distributed along a latitudinal transect (lat. 58°) extending east and west of Ungava Bay. The data show that tills located west and southwest of the Ungava Bay region are largely dominated by hornblende grains with Archean ages (>2.6 Ga), while tills located east of Ungava Bay are characterized by grains with early Paleoproterozoic ages (2.0–1.8 Ga), although most samples contain a few Archean-age grains. IRD derived from the NQL region should thus be characterized by a large proportion of Archean-age detrital grains, which contrasts significantly with the predominant Paleoproterozoic 40Ar/39Ar ages (1.8–1.6 Ga) typically reported for the dominant age population of hornblende grains in H layers. Comparisons with IRD through the last glacial cycle from a western North Atlantic core off Newfoundland do not show evidence for any prominent ice-rafted event with the provenance characteristics of NQL glacial deposits, thereby suggesting that significant ice-calving event(s) from the Labrador–Québec sector may have been limited throughout that interval. Although these results tend to point towards a relative stability of this ice dome during H events, our study also indicates that further provenance work is required on IRD proximal to the Hudson Strait mouth in order to constrain with a greater confidence the sector(s) of the LIS that fed ice into Hudson Strait during H events. Alternatively, these results and other paleogeographic considerations tend to support models suggesting that part of the Ungava Bay glacial lineations could be associated with a Late-Glacial ice flow across Hudson Strait.  相似文献   

19.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

20.
The chronology of the Solar System, particularly the timing of formation of extra‐terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb‐Sr, K‐Ar), and even applied (K‐Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra‐terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra‐terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号