首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Braun  D.C.  Lindsey  C. 《Solar physics》2000,192(1-2):285-305
The development of solar acoustic holography has opened a major new diagnostic avenue in local helioseismology. It has revealed `acoustic moats' surrounding sunspots, `acoustic glories' surrounding complex active regions, and `acoustic condensations' suggesting the existence of significant seismic anomalies up to 20 Mm beneath active-region photospheres. Phase-sensitive seismic holography is now yielding high-resolution maps of sound travel-time anomalies caused by magnetic forces in the immediate subphotosphere, apparent thermal enhancements in acoustic moats, and Doppler signatures of subsurface flows. It has given us the first seismic images of a solar flare, and has uncovered a remarkable anomaly in the statistical distribution of seismic emission from acoustic glories. Seismic holography will probably give us the means for early detection of large active regions on the far-surface of the Sun, and possibly of deep subsurface activity as well. This powerful diagnostic now promises a new insight into the hydromechanical and thermal environments of the solar interior in the local perspective.  相似文献   

2.
Ikhsanov  R. N.  Parfinenko  L. D.  Efremov  V. I. 《Solar physics》1997,170(2):205-215
High-quality stratospheric photographs in the continuum were used to investigate spatial scales of the solar granulation field. Two-dimensional intensity power spectra are shown to contain most frequently the modes corresponding to the sizes of granules, protogranules, mesogranules, and supergranules. The place of these four, the most steady formations of the quiet Sun in the global structure of the solar photosphere, is discussed as well as their interconnection and their relation to weak and strong magnetic fields. The protogranulation scale is argued to play an important role in organization of the fine structure of the photosphere and magnetic fields in the quiet and active regions of the Sun.  相似文献   

3.
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.  相似文献   

4.
Benz  Arnold O.  Krucker  Säm 《Solar physics》1998,182(2):349-363
Sensitive observations of the quiet Sun observed by EIT on the SOHO satellite in high-temperature iron-line emission originating in the corona are presented. The thermal radiation of the quiet corona is found to fluctutate significantly, even on the shortest time scale of 2 min and in the faintest pixels. The power spectrum of the emission measure time variations is approximately a power law with an exponent of 1.79±0.08 for the brightest pixels and 1.69±0.08 for the average and the faintest pixels. The more prominent enhancements are identified with previously reported X-ray network flares (Krucker et al., 1997) above the magnetic network of the quiet chromosphere. In coronal EUV iron lines they are amenable to detailed analysis suggesting that the brightenings are caused by additional plasma injected from below and heated to slightly higher temperature than the preexisting corona. Statistical investigations are consistent with the hypothesis that the weaker emission measure enhancements originate from the same parent population. The power input derived from the impulsive brightenings is linearly proportional to the radiative loss in the observed part of the corona. The absolute amount of impulsive input is model-dependent. It cannot be excluded that it can satisfy the total requirement for heating. These observations give strong evidence that a significant fraction of the heating in quiet coronal regions is impulsive.  相似文献   

5.
Chou  Dean-Yi 《Solar physics》2000,192(1-2):241-259
Acoustic imaging is a new method to construct the acoustic signal at a point on the solar surface or in the solar interior with the signals measured at the solar surface. The constructed signals contain both intensity information and phase information. The intensity is computed by summing the squared amplitude of the constructed signal over time. The phase of constructed signals can be studied by the cross-correlation function between the time series constructed with ingoing waves and outgoing waves. The location of the envelope peak of the cross-correlation function and the phase of the cross-correlation function contain different information on the physical conditions of the plasma along the wave path. From the constructed signals, one can form the two-dimensional outgoing intensity map, absorption map, phase-shift map, and envelope-shift map of a target region at different focal depths. The perturbed physical conditions caused by the magnetic fields of active regions manifest in these maps. The outgoing intensity is lower in magnetic regions than the quiet Sun. The group travel time and phase travel time are smaller in magnetic regions than in the quiet Sun. In this paper, we review the studies of active regions, including emerging flux regions, with acoustic imaging.  相似文献   

6.
Braun  D.C.  Lindsey  C. 《Solar physics》2000,192(1-2):307-319
Phase-correlation statistics comparing acoustic radiation coming out of a particular point on the solar photosphere with acoustic radiation going into it show considerably reduced sound travel times through the subphotospheres of active regions. We have now applied techniques in phase-sensitive seismic holography to data from the Solar Oscillations Investigation – Michelson Doppler Imager (SOI-MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft to obtain high resolution phase-correlation maps of a large, complex active region and the `acoustic moat' which surrounds it. We report the following new results: First, the reduced sound travel-time perturbations in sunspots, acoustic moats, and isolated plages increase approximately in proportion to the logarithm of the surface magnetic flux density, for flux densities above 10 G. This is consistent with an interpretation of the travel-time anomalies, observed with holographic and other local-helioseismic procedures, as caused by acoustic Wilson-like depressions in photospheres of magnetic regions. Second, we find that, compared with isolated plages, the acoustic moats have an additional sound travel-time reduction on the order of 3–5 s which may be explained by a thermal excess due to the blockage of convective transport by the sunspot photosphere. Third, the combined effect of the Wilson depression in plages, acoustic moats, and sunspots may explain the observed variation of global p-mode frequencies with the solar cycle. Fourth, we find that active regions, including sunspots, acoustic moats, and plages, significantly reflect p modes above the acoustic cut-off frequency, where the surface of the quiet Sun acts as a nearly perfect absorber of incident acoustic radiation.  相似文献   

7.
We present a comparative study of photometric and dynamic properties of photospheric bright points (BPs) observed at the disk centre in the active region (AR) NOAA 10912 and in the quiet Sun. We found that the average concentration of BPs is 54% larger in the AR than in the quiet Sun. We also measure a decrease of the BP concentration and an increase of their size moving away from the AR centre. However, these variations can be ascribed to the variation of the spatial resolution and image quality in the field of view of the AR dataset. We also found that BPs in the quiet Sun are associated with larger downflow motions than those measured within the AR. Finally, from our measurements of contrast and velocity along the line of sight, we deduced that BPs are less bright in high magnetic flux density regions than in quiet regions, due to a lower efficiency of convection in the former regions.  相似文献   

8.
High-resolution photographs of the photospheric network taken in the Caii K 3933 Å line and at 4308 Å are analysed in order to study the variation, in latitude and over the sunspot cycle, of its density (the density is defined as the number of network elements - also called facular points - per surface unity). It appears that the density of the photospheric network is not distributed uniformly at the surface of the Sun: on September 1983, during the declining phase of the current activity cycle, it was weakened at both the low (equatorial) and high (polar) active latitudes, while it was tremendously enhanced toward the pole. The density at the equator is varying in antiphase to the sunspot number: it increases by a factor 3 or more from maximum to minimum of activity. As a quantum of magnetic flux is associated to each network element, density variations of the photospheric network express in fact variations of the quiet Sun magnetic flux. It thus results that the quiet Sun magnetic flux is not uniformly distributed in latitude and not constant over the solar cycle: it probably varies in antiphase to the flux in active regions.The variation over the solar cycle and the latitude distribution of photospheric network density are compared to those of X-ray bright points and ephemeral active regions: there are no clear correlations between these three kinds of magnetic features.  相似文献   

9.
The cause of enhanced acoustic power surrounding active regions, known as the acoustic halo, is not as yet understood. We explore the properties of the enhanced acoustic power observed near disk center from 21 to 27 January 2002, including AR 9787. We find that i) there exists a strong correlation of the enhanced high-frequency power with magnetic-field inclination, with greater power in more horizontal fields, ii) the frequency of the maximum enhancement increases along with magnetic-field strength, and iii) the oscillations contributing to the halos show modal ridges that are shifted to higher wavenumber at constant frequency in comparison to the ridges of modes in the quiet Sun.  相似文献   

10.
We examine the interpretation of plasma parameters derived by quantitative analysis of solar X-ray photographs obtained through broad band filters. We find some of the recent criticisms of the filter ratio method to be unfounded. Using active region and quiet Sun emission measures derived mostly from spectroscopic observations we find that effective emission measures and temperatures derived from S-054 data by filter ratio analysis are within better than 20% of the total emission measure and average temperature, respectively. The uncertainties associated with filtered flux determination are found to produce an error of about 10% in the derived effective temperature. We thus conclusively demonstrate that parameters derived from S-054 data by filter ratio analysis are representative of the observed active region and quiet Sun material.  相似文献   

11.
Based on Hinode SOT/NFI observations with greatly improved spatial and temporal resolution and polarization sensitivity, the lifestory of the intranetwork (IN) magnetic elements are explored in a solar quiet region. A total of 2282 IN elements are followed from their appearance to disappearance and their fluxes measured. By tracing individual IN elements their lifetimes are obtained, which fall in the range from 1 to 20 min. The average lifetime is 2.9±2.0 min. The observed lifetime distribution is well represented by an exponential function. Therefore, the e-fold characteristic lifetime is determined by a least-square fitting to the observations, which is 2.1±0.3 min. The lifetime of IN elements is correlated closely with their flux. The evolution of IN elements is described according to the forms of their birth and disappearance. Based on the lifetime and flux obtained from the new observations, it is estimated that the IN elements have the capacity of heating the corona with a power of 2.1×1028 erg s−1 for the whole Sun.  相似文献   

12.
氢是太阳大气中最主要的元素。氢原子的赖曼(Lyman)谱线,尤其是赖曼阿尔法(Ly-α)谱线的辐射,是太阳色球和低过渡区能量损失的主要形式。在太阳的赖曼α像中,网络组织的辐射比较强,而辐射最强的地方是活动区。由于存在辐射转移效应,在宁静区,低阶赖曼谱线的谱形中央一般会形成一个凹陷,而在中央两侧则形成两个峰,两峰往往呈现出一定的不对称性。数值模拟和观测研究表明,赖曼谱线双峰的不对称性与高层大气中各种系统性流动有关。在太阳活动区,赖曼谱形在谱斑区与在宁静区类似;而在黑子区,赖曼谱形几乎没有中央凹陷。赖曼谱形也可用于诊断日珥、耀斑和日冕物质抛射等结构和现象的等离子体特性。该文回顾了赖曼谱线的观测历史,阐明了观测与模拟结果所揭示的物理过程,并结合笔者的认识进行了相应的评论。  相似文献   

13.
J. T. Mariska 《Solar physics》2013,282(2):629-639
Since its launch on 22 September 2006, the EUV Imaging Spectrometer onboard the Hinode satellite has exhibited a gradual decay in sensitivity. Using spectroheliograms taken in the Fe viii 185.21 Å and Si vii 275.35 Å emission lines in quiet regions near Sun center we characterize that decay. For the period from December 2006 to March 2012, the decline in the sensitivity can be characterized as an exponential decay with an average time constant of 7358±1030 days (20.2±2.8 years). Emission lines formed at temperatures ??106.1 K in the quiet Sun data exhibit solar-cycle effects.  相似文献   

14.
Solar magnetic indices are used to model the solar irradiance and ultimately to forecast it. However, the observation of such indices is generally limited to the Earth-facing hemisphere of the Sun. Seismic maps of the far side of the Sun have proven their capability to locate and track medium–large active regions at the non-visible hemisphere. We present here the possibility of using the average signal from these seismic far-side maps, combined with similarly calculated near-side maps, as a proxy to the full-Sun magnetic activity.  相似文献   

15.
The high spatial resolution observation of a quiet region taken with the Solar Optical Telescope/Spectro-Polarimeter aboard the Hinode spacecraft is analyzed. Based on the Milne?CEddington atmospheric model, the vector magnetic field of the quiet region is derived by fitting the full Stokes profiles of the Fe i 630 nm line pair. We extract intranetwork (IN) region from the quiet region and identify 5058 IN magnetic elements, and study their magnetic properties. As a comparison, the magnetic properties of network (NT) region are also analyzed. The main results are as follows. i)?The IN area displays a predominance of weak (hecto-gauss) field concentration, i.e., 99.8?% of IN area shows the weak field. Moreover, the vector magnetic field exhibits concentration toward horizontal direction. However, for the NT region, we discover the coexistence of weak field and strong (kilo-gauss, kG) field. In the IN and NT regions, the filling factor shows almost the same probability distribution function with the peak at about 0.28. ii)?All IN magnetic elements show field strength less than 1?kG. However, some NT elements display the coexistence of weak field and strong field. Regardless of NT or IN elements, about 20?% of elements lies in the Doppler blue-shift region. Our results imply that not all magnetic elements lie in the down-draft sites.  相似文献   

16.
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2?–?10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.  相似文献   

17.
The radio emission from the solar corona is related to the configuration of the inner atmosphere. By studying the Sun at multiple frequencies, different layers of plasma in solar atmosphere are probed. We use the Mauritius Radio Telescope. The quiet Sun period, difference maps using synthesized 1D maps reveal a certain regular feature, the origin of which is not thoroughly understood and which is attributed to the solar differential rotation. For the active Sun period, the coronal emission is linked to the magnetic field configuration originating from the inner atmosphere. As expected, a strong correlation exists between the MRT 151 MHz and Nancay 164 MHz radio emission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Makarov  V.I.  Tlatov  A.G.  CALLEBaUT  D.K.  Obridko  V.N.  Shelting  B.D. 《Solar physics》2001,198(2):409-421
Hα magnetic synoptic charts of the Sun are processed for 1915–1999 and the spherical harmonics are calculated. It is shown that the polarity distribution of the magnetic field on Hα charts is similar to the polarity distribution of the Stanford magnetic field observations during 1975–1999. The index of activity of the large-scale magnetic field A(t), representing the sum of the intensities of dipole and octupole components, is introduced. It is shown that the cycle of the large-scale magnetic field of the Sun precedes on the average by 5.5 years the sunspot activity cycle, W(t). This means that the weak large-scale magnetic fields of the Sun do not result from decay and diffusion of strong fields from active regions as it is supposed in all modern theories of the solar cycle. On the basis of the new data the intensity of the current solar cycle 23 is predicted and some aspects of the theory of the solar cycle are discussed.  相似文献   

19.
C. Lindsey  A.-C. Donea 《Solar physics》2008,251(1-2):627-639
Instances of seismic transients emitted into the solar interior in the impulsive phases of some solar flares offer a promising diagnostic tool, both for understanding the physics of solar flares and for the general development of local helioseismology. Among the prospective contributors to flare acoustic emission that have been considered are: i) chromospheric shocks propelled by pressure transients caused by impulsive thick-target heating of the upper and middle chromosphere by high-energy particles, ii) heating of the photosphere by continuum radiation from the chromosphere or possibly by high-energy protons, and iii) magnetic-force transients caused by magnetic reconnection. Hydrodynamic modeling of chromospheric shocks suggests that radiative losses deplete all but a small fraction of the energy initially deposited into them before they penetrate the photosphere. Comparisons between the spatial distribution of acoustic sources, derived from seismic holography of the surface signatures of flare acoustic emission, and the spatial distributions of sudden changes both in visible-light emission and in magnetic signatures offer a possible means of discriminating between contributions to flare acoustic emission from photospheric heating and magnetic-force transients. In this study we develop and test a means for estimating the seismic intensity and spatial distribution of flare acoustic emission from photospheric heating associated with visible-light emission and compare this with the helioseismic signatures of seismic emission. Similar techniques are applicable to transient magnetic signatures.  相似文献   

20.
Data obtained during the first rocket flight of the NRL High Resolution Telescope and Spectrograph (HRTS) have been used to study nonthermal velocities for spectral lines primarily covering the temperature range 104 to 2 × 106 K. The high spectral and spatial resolution, combined with an enhanced dynamic intensity range of the reduced data, has enabled us to study the distribution of the nonthermal velocities for quiet and active regions. Average values of the nonthermal velocities peak at about 27 km s–1 at 105 K for the quiet regions, with a wide distribution of nonthermal velocities for each line. The active region nonthermal velocities have a narrower distribution which is weighted towards higher values. The SiIV and C IV line profiles are not well described by a single Gaussian, indicating that high-velocity components (above 30 km s–1) are present in the quiet-Sun spectra. The radiative losses for all plasma above l05 K have been calculated for the quiet Sun, an active region and a coronal hole. These have been compared with the acoustic wave flux inferred from the nonthermal line widths. There appears to be a sufficient flux of waves to heat these regions of the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号