首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Eleven impact melt and 6 basement rock samples from 4 craters were analyzed by neutron activation for Au, Co, Cr, Fe, Ge, Ir, Ni, Os, Pd, Re and Se. Wanapitei Lake, Ontario: the impact melts show uniform enrichments corresponding to 1–2% C1-chondrite material. Interelement ratios (CoCr, NiCr, NiIr) suggest that the impacting body was a Cl-, C2-, or LL-chondrite. Nicholson Lake, North West Territory: Ni, Cr and Co are distinctly more enriched than Ir and Au which tentatively suggests an olivine-rich achondrite (nakhlite or ureilite). Gow Lake, Saskatchewan and Mistastin, Labrador: small enrichments in Ir and Ni; both the low IrNi ratios and low Cr content suggest iron meteorites, but the signals are too weak for conclusive identification.A tentative comparison of meteoritic signatures at 10 large, ≥4km craters and their presumed celestial counterparts (13 Apollo and Amor asteroids) shows more irons and achondrites among known projectile types, and a preponderance of S-type objects, having no known meteoritic equivalent, among asteroids. It is not yet clear that these differences are significant, in view of the tentative nature of the crater identifications (achondrites in particular), and the limited statistics.  相似文献   

2.
Sixteen crater samples were analyzed by radiochemical neutron activation analysis for Ge, Ir, Ni, Os, Pd and Re. Two impact melt rock samples from Clearwater East (22 km) showed strong, uniform enrichments in all elements except Ge, corresponding to 7.4% C1 chondrite material. Interelement ratios suggest that the meteorite was a C1 (or C2) chondrite, not an iron, stony iron, or chondrite of another type. An Ivory Coast tektite (related to the 10 km Bosumtwi crater) was enriched in Ir + Os and Ni to about 0.04 and 1.6% of C1 chondrite levels, but in the absence of data on country rocks, the meteorite cannot yet be characterized.Impact melt rock samples from Clearwater West (32km), Manicouagan (70km), and Mistastin (28 km) showed no detectable meteoritic component. Upper limits, as Cl chondrite equivalent, were Os ≤ 2 × 10?3% (~0.01 ppb), Ni ≤ 2 × 10?1% (~20ppm). Possible causes are high impact velocity and/or a chemically inconspicuous meteorite (achondrite, Ir,Os-poor iron or stony iron). However, a more likely reason is that some fraction of the impact melt remains meteorite-free, especially at craters with central peaks.Clearwater East is the first terrestrial impact crater found to be associated with a stony meteorite. Apparently the consistent absence of stony projectiles at small craters (< 1 km diameter) reflects their destruction in the atmosphere, as proposed by Öpik.  相似文献   

3.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

4.
A set of 11 impact melt rock samples from the Rochechouart impact structure, France and nine impact melt rock samples from Sääksjärvi impact structure, Finland were studied for their major and trace element compositions, including the abundances of the platinum group elements. The main goal of this study was to identify the projectile type(s) responsible for the formation of these two impact structures. The results confirmed previous studies that suggested extraterrestrial contamination in both the Rochechouart and Sääksjärvi impact melt rocks. The projectile types found for Rochechouart and Sääksjärvi are quite similar, and compatible with the composition of non-magmatic iron meteorites (IA and IIIC). This interpretation is based on: identical platinum group element patterns as well as peculiar Ni/Cr, Ni/Ir and Cr/Ir ratios, which can be explained by mixing of the different components of non-magmatic iron meteorites. This result indicates that, besides ordinary chondrites, non-magmatic iron may be among the most common material impacting the Earth, as they also represent the majority of the projectiles for craters smaller that 1.5 km. The abundance of non-magmatic irons as projectiles as well as their composition (olivine, pyroxene and iron) supports the assumption that a fraction of the S-type asteroids could by related to this type of material.  相似文献   

5.
In an attempt to characterize meteoritic material at the Apollo 12 site, 4 KREEP concentrates from soil 12033 have been analyzed by neutron activation analysis. These contain a meteoritic component in which siderophile Ir, Re and Sb are depleted by about a factor of 2, while volatile Se, Zn, Ag and Bi are depleted by a factor of more than 5 relative to Au. This pattern does not closely resemble any major chondrite or iron meteorite group, but is very similar to that observed in high-alkali samples from Apollo 14. The meteoritic component in KREEP at both sites is therefore predominantly derived from Imbrian ejecta. However, a second, small component of primitive composition seems to be present in Apollo 12 KREEP, judging from the slight, uniform enrichments in Ir, Re, Sb, Se and Zn relative to Au. This component does not seem to be due to micrometeorites. If it is attributed to the Copernican projectile, the crater Copernicus may have been formed by a cometary nucleus, 4 km in diameter, with an impact velocity of 30–40 km/sec. These conclusions depend critically on the assumption that the meteoritic component in Apollo 12 KREEP is representative of the entire impact.  相似文献   

6.
With a diameter of ∼100 km, Popigai in Northern Siberia is the largest crater known in the Cenozoic. The concentrations in platinum group elements (PGE) were analyzed in twenty samples of homogeneous impact melt collected in the northwestern flank of the crater to identify the composition of the projectile. The method selected was preconcentration by NiS fire assay followed by inductively coupled plasma-mass spectrometry (ICP-MS). This technique measures all the PGE (except Os) and by using aliquots >10g, the results are highly reproducible. The major and trace element composition of the impact melt resembles that of gneissic lithologies of the Anabar shield, which are representative of the target rock. The PGE are enriched in the melt by factors of 3 to 14 compared to the main target lithology, but the meteoritic contamination is only around 0.2 wt.%. Using plots of elemental ratios such as Ru/Rh vs. Pt/Pd or Ru/Rh vs. Pd/Ir, the Popigai impactor is clearly identified as an ordinary chondrite and most likely l-chondrite. This study indicates that PGE elemental ratios allow discrimination of the type of impactor, even in the case of low meteoritic contamination. This study confirms that a significant fraction of the crater-forming projectiles presently documented could have an ordinary chondrite composition. Their probable source, the S-type asteroids, appears to form the majority of the bodies in the main asteroid belt and among Near Earth Objects (NEOs). The ordinary chondrite origin of the Popigai projectile supports an asteroidal origin for the late Eocene impacts as a plausible alternative to the comet shower scenario proposed by Farley et al. (1998).  相似文献   

7.
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites.  相似文献   

8.
The goal of this study is to identify the type of projectile responsible for the formation of the late Precambrian Gardnos impact structure in Norway. Fifteen impactite samples, predominantly impact breccias and suevites from the central and northeastern part of the structure, were analyzed for platinum group elements (PGE) and Au using nickel-sulfide fire assay combined with inductively coupled plasma mass spectrometry (ICP-MS). Major and trace elements were measured in the same samples using X-ray fluorescence (XRF). In addition, the concentrations of siderophile elements Ni, Cr, and Co were determined by ICP-MS after acid digestion. The samples collected at the contact between suevite and the sedimentary infill yielded the highest PGE concentrations (Ir = 1.926 ng/g, Ru = 3.494 ng/g, Pt = 4.716 ng/g, Rh = 0.766 ng/g, Pd = 2.842 ng/g for GC6). The CI-normalized PGE patterns are characterized by Ru and Rh enrichments suggesting a non-chondritic impactor. Concentration plots of the different PGE display an excellent correlation (R > 0.99), indicative of a single source for the PGE enrichment. The Ni/Cr ratio of the Gardnos impactor (2.56 ± 0.20) agrees with that of chondrites (2 to 7), whereas Ir is depleted relative to Ni in this projectile (Ni/Ir ratio of 92 000 ± 8000 compared to an average Ni/Ir ratio of 23 150 ± 4250 for chondrites). There is no clear indication of selective post-depositional remobilization of the characteristic highly siderophile elements. The Ni/Ir and Cr/Ir data combined with the non-chondritic PGE ratios probably indicate a differentiated projectile. Based on (1) the similarity of the inter-element ratios of the impactor with the iron phase of non-magmatic iron meteorites and (2) the presence of characteristics of both chondrites and iron meteorites (Ni/Cr and Ni/Ir ratios), an IA or IIIC non-magmatic iron meteorite is a very plausible impactor.  相似文献   

9.
The 16 trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl and Zn) were measured by radiochemical neutron activation analysis in six samples of 14321, 184: microbreccia-2 (15), microbreccia-3 (14A, 16A and 19A), basaltic clast (1A), and light matrix material (9A). The 14321 microbreccias typically contain a siderophile-rich ancient meteoritic component, poor in volatiles, which is characterized by low IrAu and ReAu ratios (0.25-0.38 and 0.34-0.50, respectively, normalized to Cl). This component also occurs in Apollo 12 KREEP glasses, norite fractions of Apollo 14 1–2 mm soils, Apennine Front breccias, and Cayley Formation material, and may represent ejecta from the Imbrian basin.The basaltic clast 14321, 184-1A closely resembles 14053 in trace element content, and both are 5–10 times higher than mare basalts in volatile trace elements (Br, Cd, Tl). The light matrix material contains 9.2 ± 0.5 per cent of microbreccias, judging from its siderophile content.  相似文献   

10.
Criteria allowing diagnostic identification of asteroid and comet impact fallout units (impactites), including fragmental ejecta, microtektites and microkrystite spherules (impact vapour condensates) comprise: (i) unique mineral fallout phases—shocked quartz grains, coesite and nano-diamonds; (ii) unique intra-microkrystite phases—Ni-chromite, Ni-nanonuggets and Ir-nanonuggets, condensed from vapour enriched in meteoritic components; (iii) geochemical features such as high abundance and unique ratios of the platinum group (PGE) and other siderophile elements (Ni, Co); (iv) meteoritic isotopic ratios including ε53Cr (53Cr/52Cr), ε54Cr (54Cr/52Cr), ε182W (182W/183W) or (182W/184W), εOs (187Os/188Os), ε17O (17O/16O), ε18O (18O/16O); and (v) cometary seeding of 3He/4He and racemic organic molecules (AIB) and possibly fullerenes (C60). Relic nickel chromites and metasomatically derived sulfides may contain PGE nanonuggets. Alteration, burial metamorphism and open-system mobility of uranium in hydrous terrestrial environments renders preservation of meteoritic ε207Pb (207Pb/204Pb) and ε206Pb (206Pb/204Pb) values unlikely. Where least affected, PGE patterns of microkrystites and microtektite-bearing impact fallout units (impactites) are the reverse of terrestrial PGE patterns, including low Pd/Pt ratios, which provide some of the more readily identified and analytically practical criteria for identifying a meteoritic component. εCr?–?εCr relations in Barberton Greenstone Belt impact fallout units (3.26?–?3.24 Ga) identify a carbonaceous chondrite composition of the parental asteroids. PGE abundances (Ir, Pt) and εCr isotope values allow mass-balance estimates of parental projectiles in the order of 20?–?30 km diameter. Ir and Pt mass-balance estimates correspond to projectiles ~20 km in diameter or larger in the Pilbara Craton for the JIL (>?2.63 Ga) and DGS4 (2.5?–?2.47 Ga) impact fallout units. The Ni, Co and Cr enriched composition of most Precambrian microkrystite spherules militates for mafic/ultramafic target crust which, coupled with the estimated diameter of the ensuing craters, implies the existence of maria-scale impact basins in oceanic-type crustal regions during the Archaean and Palaeoproterozoic.  相似文献   

11.
Structural observations and concentrations of Ni, Ga, Ge and Ir allow the classification of 57 iron meteorites in addition to those described in the previous papers in this series; the number of classified independent iron meteorites is now 535. INAA for an additional six elements indicates that five previously studied irons having very high GeGa ratios are compositionally closely related and can be gathered together as group IIF. A previously unstudied iron, Dehesa, has the highest GeGa ratio known in an iron meteorite, a ratio 18 × higher than that in CI chondrites. Although such high GeGa ratios are found in the metal grains of oxidized unequilibrated chondrites, their preservation during core formation requires disequilibrium melting or significant compositional and temperature effects on metal/silicate distribution constants and/or activity coefficients. In terms of GeGa ratios and various other properties group IIF shows genetic links to the Eagle Station pallasites and COCV chondrites. Klamath Falls is a new high-Ni, low-Ir member of group IIIF that extends the concentration ranges in this group and makes these comparable to the ranges in large igneous groups such as IIIAB. Groups IAB and IIICD have been revised to extend the lower Ni boundary of group IIICD down to 62 mg/g. The iron having by far the highest known Ni concentration (585 mg/g), Oktibbeha County, is a member of group IAB and extends the concentration ranges of all elements in this nonmagmatic group. Morasko, a IAB iron associated with a crater field in Poland, is paired with the Seeläsgen iron discovered 100 km away. All explosion craters from which meteorites have been recovered were produced by IAB and IIIAB irons.  相似文献   

12.
Two general classes of lunar impact breccias have been recognised: fragmental breccias and melt breccias. Fragmental breccias are composed of clastic-rock debris in a finely comminuted grain-supported matrix of mineral and lithic fragments. Impact melt breccias have crystalline to glassy matrices that formed by cooling of a silicate melt. Most lunar impact breccias in our collection probably sample ejecta from large complex craters or multi-ring basins, although linking individual breccias to specific impact events has proven surprisingly difficult. A long-standing problem in lunar science has been distinguishing clast-poor impact melt breccias from igneous rocks produced by melting of the lunar interior. Concentrations and relative abundances of highly siderophile elements derived from the meteoritic impactor provide a useful discriminant, especially when combined with petrologic and geochemical evidence for mechanical mixing. Most lunar impact melt breccias have crystallisation ages of 4.0?–?3.8 Ga, corresponding to an episode of intensive crustal metamorphism recorded by whole-rock U?–?Pb isotopic compositions of lunar anorthosites. This may reflect a short-lived spike in the cratering rate, although other explanations are possible. The question of whether or not a cataclysmic bombardment struck the Earth and Moon at ca 3.9 Ga remains open and the subject of continuing investigations.  相似文献   

13.
The composition of the sampled melt rocks at the 22 km diameter E. Clearwater impact structure indicates the presence of ~8% C-1 material. The meteoritic component is fractionated with refractory siderophiles, up to 30 times C-1 abundances, concentrated in ten to hundred micron-sized, magnetic particles. These particles consist of the Ni-sulphide, millerite, and what is assumed to be a mixture of refractory silicates and magnetite with grain sizes of <1 μm. The larger particles have a core-rim structure with millerite and occasionally very minor galena and possibly pentlandite in the core. An origin as a combination of altered meteoritic metal and condensed meteoritic silicate is favored for the origin of the siderophile-rich particles. If 8% meteoritic material is taken as the average meteoritic contamination in the melt, then the E. Clearwater projectile may have impacted with a velocity of 17 km s?1. Peak shock pressures would have been of the order of 300 GPa, sufficient to vaporize the silicate component but only melt the metal component of the projectile. As the meteoritic material was being driven down into vaporized/ melted target rocks during the initial stages of impact, the melted Fe, Ni metal underwent oxidation, Fe was removed, and meteoritic silicate material recondensed on the cooler, essentially Ni metal. As cavity excavation proceeded, these Ni metal, silicate-oxide particles were incorporated in the melt, their refractory nature prevented thermal digestion and sulphur in the melt reacted with the metal to produce millerite on final equilibration. If this hypothesis is correct, it suggests that the E. Clearwater projectile was a C-2 or C-3 chondrite, both of which are compatible with the trace element composition of the melt rocks. Clearwater Lake is a twin impact structure formed by an asteroid pair. It is still not clear, however, what type of projectile formed the 32 km diameter western structure, where the surface melt rocks contain no identifiable meteoritic signature.  相似文献   

14.
The composition of the sampled melt rocks at the 22 km diameter E. Clearwater impact structure indicates the presence of 8% C-1 material. The meteoritic component is fractionated with refractory siderophiles, up to 30 times C-1 abundances, concentrated in ten to hundred micron-sized, magnetic particles. These particles consist of the Ni-sulphide, millerite, and what is assumed to be a mixture of refractory silicates and magnetite with grain sizes of <1 m. The larger particles have a core-rim structure with millerite and occasionally very minor galena and possibly pentlandite in the core. An origin as a combination of altered meteoritic metal and condensed meteoritic silicate is favored for the origin of the siderophile-rich particles. If 8% meteoritic material is taken as the average meteoritic contamination in the melt, then the E. Clearwater projectile may have impacted with a velocity of 17 km s–1. Peak shock pressures would have been of the order of 300 GPa, sufficient to vaporize the silicate component but only melt the metal component of the projectile. As the meteoritic material was being driven down into vaporized/ melted target rocks during the initial stages of impact, the melted Fe, Ni metal underwent oxidation, Fe was removed, and meteoritic silicate material recondensed on the cooler, essentially Ni metal. As cavity excavation proceeded, these Ni metal, silicate-oxide particles were incorporated in the melt, their refractory nature prevented thermal digestion and sulphur in the melt reacted with the metal to produce millerite on final equilibration. If this hypothesis is correct, it suggests that the E. Clearwater projectile was a C-2 or C-3 chondrite, both of which are compatible with the trace element composition of the melt rocks. Clearwater Lake is a twin impact structure formed by an asteroid pair. It is still not clear, however, what type of projectile formed the 32 km diameter western structure, where the surface melt rocks contain no identifiable meteoritic signature.  相似文献   

15.
Siderophile and lithophile trace element data for 69 samples from the Sudbury impact crater fill (Onaping Formation) and quartz diorite offset dikes help constrain the sources of the established moderately elevated platinum group element signature associated with the impact structure. The siderophile element distribution of the crater fill requires contributions from bulk continental crust, mafic rocks and a chondritic component. A mantle component is absent, but the involvement of mid to lower crust is implied. After considering post‐impact hydrothermal alteration, melt heterogeneity and mafic target admixture, the projectile elemental ratios were determined on a more robust data subset. Chondrite discrimination diagrams of these ratios identify an ordinary or enstatite chondrite as the most probable source of meteoritic material in the Sudbury crater fill. However, the relative and absolute siderophile element distributions within the impact structure as well as bolide size models are congruent with the bolide being a comet that had a chondritic refractory component.  相似文献   

16.
Impact melt lithologies of the 77 m.y. old Finnish meteorite crater Lappajärvi as well as the Precambrian target rocks have been studied in detail, to identify and characterize different impact melt types (clast-poor, clast-rich, suevitic melt) and to study their chemical (major and trace elements) and isotopic (Rb-Sr) compositions in comparison to the composition of the target rocks.The Rb-Sr system of the whole melt body—including the suevitic melt—is shown to have been reequilibrated by the impact by extensive turbulent mixing of the various melted or vaporized target rocks. Chemical interactions (exchange of alkali elements, 87Sr-redistribution) between feldspar clasts and impact melt surrounding them are the result of thermal metamorphism following the incorporation of target rock fragments of various degrees of shock metamorphism into the superheated melt. Exchange reactions between clasts and melt are determined by thermal activation, but the degree of shock metamorphism in the clasts plays an important role, too.Major and trace element distributions in impact melt and basement rocks indicate that the Lappajärvi melt body chemically is extremely homogeneous. Even volatile elements (such as Zn and Cu) were not strongly fractionated. Comparison of the abundances of siderophile elements in the impact melt (e.g., 118–177 ppm Cr, 195–340 ppm Ni, 6–12 ppb Ir) and calculated target rock mixture (79% mica schist, 11% granite-pegmatite, 10% amphibolite) (e.g., 85.6 ppm Cr, 54.8 ppm Ni, 0.5 ppb Ir) revealed the chondritic nature (C or H chondritic) of the meteoritic projectile. Less than 2% of the meteorite can be detected in the coherent melt, whereas the suevitic melt is uncontaminated by the projectile.  相似文献   

17.
The Chicxulub and Ries impact craters were excavated from layered continental terrains that were composed of carbonate-bearing sedimentary sequences and underlying crystalline silicate basement materials. The Chicxulub and Ries impact events were sufficiently large to produce complex peak-ring impact craters. The walls of transient craters and excavation cavities, with diameters of 12-16 km for the Ries and 90-100 km for Chicxulub, collapsed to form final crater diameters of ∼24 and ∼180 km, respectively. Debris from both the sedimentary and crystalline layers was ejected during crater formation, but the bulk of the melting occurred at depth, in the silicate basement. The volume of melt and proportion of melt among shock-metamorphosed debris was far larger at Chicxulub, producing a central melt sheet ∼3 km in depth. The central melt sheet was covered with melt-bearing polymict breccias and, at the Ries, similar breccias (crater suevites) filled the central cavity. Also at the Ries (and presumably at Chicxulub), large hill-size megablocks of crystalline basement material were deposited near the transient crater rim. Blocks and megablocks of sedimentary lithologies were ejected into the modification zone between the peak ring and final crater rim, while additional material was slumping inward during crater growth, and buried beneath a fallout deposit of melt-bearing polymict breccias. The melt and surviving clasts in the breccias are dominantly derived from the deeper, basement lithologies. At greater distances, however, the ejecta is dominated by near-surface sedimentary lithologies, large blocks of which landed with such high energy that they scoured and eroded the pre-existing surface. The excavation and ejecta pattern produced lithological and chemical variations with radial distance from the crater centers that evolve from basement components near the crater centers to sedimentary components far from the crater centers. In addition, carbonate (and anhydrite in the case of Chicxulub) was vaporized, producing environmentally active gases. The vaporized volume produced by the Ries impact event was too small to dramatically alter the evolution of life, but the vaporized volume produced by the Chicxulub impact event is probably a key factor in the Cretaceous-Tertiary boundary mass extinction event.  相似文献   

18.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

19.
《International Geology Review》2012,54(12):1079-1102
In the past few years, meteoritic and cometary impacts have emerged as a major geological agent in the construction and evolution of planetary surfaces. Formation of complex central ring, peak ring and multiring craters involves excavation and melting of large volumes of crustal material. High-resolution geophysical mapping measuring gravity, magnetics, and topography of the Moon and Mars have recently provided information on the subsurface structure of large basins and aided in identifying buried giant craters. The terrestrial crater record has been significantly erased by tectonic, magmatic, and erosion processes and only a small proportion of impact structures remain. Record of multiring craters is limited to three examples: Vredefort, Sudbury and Chicxulub. Deep geophysical surveys and geochemical and isotopic studies of those craters provide means to evaluate the influence of large impacts on the lithospheric and crustal evolution by providing estimates of excavation depth and volume, amounts of material fragmented, ejected, vaporized and melted, and effects on the crustal stratigraphy and crustal thickness. Analyses on the melt from Vredefort, Sudbury, and Chicxulub indicate andesitic composition derived from lower-crustal material. The melt formed inside the lower transient cavity from lower crustal material that was then redistributed and emplaced in upper-crustal levels, resulting in crustal redistribution. Crystalline basement clasts fragmented and incorporated into the breccias show varying degrees of alteration but no significant thermal effects. Ejecta were deposited locally within the crater region and ballistic material and fine ejecta are globally distributed on the planetary surface. Impacts influence the crust–mantle boundary, with Moho uplift. Material from the mantle was not incorporated into the melt and impact breccias, indicating that the excavation cavities were confined to the lower crust. This is also apparently the case for the giant basins on the Moon, including the 2500 km diameter South Pole-Aitken Basin. Considering the numbers of large multiring basins, possible flux of large impacts, and effects on target surfaces, crustal scale redistribution of material during those large impacts has played a major role in the evolution of planetary surfaces.  相似文献   

20.
Howardites and polymict eucrites are fragments of regolith breccias ejected from the surface of a differentiated (eucritic) parent body, perhaps, of the asteroid Vesta. The first data are presented demonstrating that howardites contain, along with foreign fragments of carbonaceous chondrites, also fragments of ordinary chondrites, enstatite meteorites, ureilites, and mesosiderites. The proportions of these types of foreign meteoritic fragments in howardites and polymict eucrites are the same as in the population of cosmic dust particles obtained from Antarctic and Greenland ice. The concentrations of siderophile elements in howardites and polymict eucrites are not correlated with the contents of foreign meteoritic particles. It is reasonable to believe that cosmogenic siderophile elements are concentrated in howardites and polymict eucrites mostly in submicrometer-sized particles that cannot be examined mineralogically. The analysis of the crater population of the asteroid Vesta indicates that the flux of chondritic material to the surface of this asteroid should have been three orders of magnitude higher than the modern meteoritic flux and have been comparable with the flux to the moon’s surface during its intense meteoritic bombardment. This provides support for the earlier idea about a higher meteoritic activity in the solar system as a whole at approximately 4 Ga. The lithification of the regolith (into regolith breccia) of the asteroid Vesta occurred then under the effect of thermal metamorphism in the blanket of crater ejecta. Thus, meteorite fragments included in howardites provide record of the qualitative composition of the ancient meteorite flux, which was analogous to that of the modern flux at the Earth surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号