首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper’s framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.  相似文献   

2.
It is not the purpose of this paper to propose a new rock mass classification system but rather to improve the existing ones by incorporating some simple quantitative interpretations. The geomechanics classification system of naturally fractured rock masses is modified to decrease personal judgement involved in its calculation. Instead of six parameters in the classical rock mass rating (RMR) system, only five basic parameters are considered in the proposed system, which are namely, rock quality designation (RQD) value with the underlying frequency distribution function of intact lengths; uniaxial or point load strength of intact rock material; conditions of the most unfavorable joints; groundwater condition; and joint orientation. Classical lump-rating system is replaced by continuous grading system which leaves no ambiguity for an inexperienced engineer in allocating grades based on quantitative field or laboratory measurements. Finally, necessary charts are presented for obtaining straightforward design values concerning average stand-up time and corresponding unsupported span of excavations in fractured rock mass; cohesion as well as friction angle of the rock mass. The continuous RMR system is very convenient for calculators or in writing computer software. The proposed methodology reduces the scale of subjectivity and leads to a unique rock mass design value.  相似文献   

3.
传统的RMR法采用固定评估因素、固定评分方式进行岩体分级,其评分过程中存在着许多不确定性和主观性,在地质条件复杂的情况下岩体分级效果差.为了改变RMR法存在的不足,本文在参考RMR法的基础之上,提出了将AHP法应用于岩体分级的方案,给出了模型计算流程.将岩体分级看作一个多属性决策问题,根据实际情况可随机加入或减少影响岩...  相似文献   

4.
5.
ABSTRACT

The local site experience is a valuable component for the success of rock mass classification systems as tunnel design methods. The Ituango hydroelectric project is a very important source of information in order to evaluate the usefulness of the main rock mass classification systems. The objective of this research is to improve understanding of some important features of excavated rock mass, such as discontinuities, block size, shear strength and joint alteration, by analyzing some hundreds of data obtained during excavation cycle.

The field study included a survey of exposures after drilling and blasting rounds. Rock mass classification and support measures for each type of terrain along 1400 m tunnel were performed. The rock mass classes could be better explained if shear strength, alteration or block size is calculated. The assessment of these data allows evaluating the block fall risk, improving support and liner. A local correlation between the RMR and Q system was also obtained.  相似文献   

6.
Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.  相似文献   

7.
A rippability classification system for marls in lignite mines   总被引:1,自引:0,他引:1  
H. Basarir  C. Karpuz   《Engineering Geology》2004,74(3-4):303-318
  相似文献   

8.
This paper encompasses the engineering geological properties of rock mass along the power tunnel of hydropower in Kohistan, Khayber Pakhtun Khawa (KPK), Pakistan. The major geological units of the study area are Chilas complex (CC) and Gilgit complex (GC) that consists mostly of igneous and metamorphic rocks. Discontinuity surveys were conducted to classify the rock mass by utilizing rock mass rating (RMR) and tunneling quality index (Q) classification systems. RMR system involves collection of data for parameters of rock strength, RQD, spacing of discontinuities, condition of discontinuities, groundwater condition and Q system involves rock quality designation (RQD), joint roughness (Jr), joint sets (Js), joint alteration (Ja), stress reduction factor (SRF) and joint water reduction (Jw). RMR values ranges from 46 to 66 (fair to good) for rock unit of Chilas complex (CC) and 50 to 58 (fair) for rock unit of Gilgit complex (GC). The evaluated values of tunnel quality by Q-system are 1.55 to 6.4 (poor to fair) for Chilas complex (CC) and 1.35 to 1.84 (poor) for Gilgit complex (GC). The required support along the tunnel route is also estimated by both classification systems. Unwedge program is used to analyze the unstable zones due to the intersection of different joint sets. Total 14 cases are analyzed in Unwedge from which 3 cases have failure potential with FOS less than 1. These failure potential blocks can become stable by applying further support of rock bolting and shotcrete layer.  相似文献   

9.
为了准确确定岩体力学参数,通过综合分析多种地质强度指标(GSI)量化方法,提出了一种改进的GSI值量化和修正方法。首先,利用测线法估算结构面平均间距(d)和岩体块度指数(RBI)的改进型岩体块度率(RBR),根据岩体三维结构面网络,获得岩体体积节理数(Jv)和岩体结构等级(SR),然后采用上述参数和结构表面条件(SCR)及结构表面特性参数(Jc)进行了GSI值的定量化处理。为了克服GSI体系的缺点,考虑结构面产状和地下水对岩体力学性质的影响,提出了GSI值的修正方法和公式。以某铅锌矿体的矿岩体为例,根据改进的GSI值量化和修正方法及Hoek-Brown强度准则来确定矿岩体力学参数,通过与原位变形试验的对比分析,验证了该方法的精确性和可行性。该方法为从室内岩石力学试验合理地获取节理岩体力学参数提供了理论及实现的依据。  相似文献   

10.
申艳军  徐光黎  杨更社 《岩土力学》2014,299(2):565-572
针对目前水电站地下厂房工程中不同围岩分类方法存在评价结果不一致、围岩力学参数存在室内试验值与实际情况不吻合的现象,现推荐采用岩体精细化描述体系对围岩岩体结构进行定量化评价。将常用围岩分类方法(RMR、Q、RMi、GSI、BQ、HC)评价指标予以归纳分组,并通过各组内不同指标对比分析获得围岩分类方法中的基础评价指标。以大岗山水电站主厂房某区段为分析对象,采取现场岩体精细化地质素描与后期数据挖掘、拟合相结合方法,并依据评价指标间的关联关系,获得了基础、非基础评价指标的分布概型及对应参数,实现对该段围岩岩体精细化描述认知;基于精细化描述结果,应用Monte Carlo法生成符合各评价指标分布概型的大量随机数,而后参照各分类方法评价思路与评分流程,得到评价指标在各分类方法对应的大量随机评分值,通过归纳统计获得不同围岩分类方法评价结果的分布概型;基于各围岩分类方法评价结果与力学参数值之间的关联关系实现对力学参数概率特征分析。该分析方法与思路可为类似工程围岩质量及力学参数的精确确定提供一定借鉴,并可为实现围岩支护极限状态设计提供必要的原始参数支持。  相似文献   

11.
Linear infrastructure networks like roads play a vital role in the socio-economic development of hill towns centered on tourism. Stability of the slopes along the hill roads are therefore a major concern and slope failures lead to disruption of traffic and loss of property/life or both. This study analyses the stability of cut-slopes along the Kodaikkanal – Palani hill road in the Western Ghats, India using rock mass classification systems like rock mass rating (RMR), slope mass rating (SMR) and continuous slope mass rating (CSMR). These geomechanical classifications provide a preliminary assessment of rock quality based on rock strength, discontinuity properties, hydrogeological condition of the slopes and slope stability based on the inherent rock strength parameters, discontinuity orientation and method of excavation. The results showed that both rock quality and discontinuity orientation contribute to type of failure in rock slopes with RMR > 40. SMR results are conservative while CSMR classification is matches more closely to the failures obtained from the field survey. CSMR classification represents continuous slope stability conditions and hence are more suitable for development of spatial database. Cutting of roads, thereby, steepening slopes has a definite influence on the stability of slopes.  相似文献   

12.
刘帝旭  曹平 《岩土力学》2015,36(Z1):408-412
综合灰色系统理论与传统的边坡岩体质量分级方法(SMR法),提出改进SMR法。传统的岩体质量分级方法中定量指标取值离散性很大,造成质量分级结果阶梯变化。灰色系统理论的灰度特征对解决这类小样本、离散性的问题有很好的适用性。首先对传统质量分级方法的评价指标进行灰类划分,确定各指标所占权重,再构建评价指标的三角白化权函数,并基于最大隶属度准则对边坡岩体进行质量分级。最后结合工程边坡实例,与一般工程RMR(岩体质量分级)与SMR法比较,改进SMR法的评价结果更加吻合工程现状,且质量分级稳定性高,表明其应用于边坡岩体质量分级是科学和准确的。  相似文献   

13.
Summary The paper analyses the influence of rock mass quality on the performance of a double shield TBM in the excavation of a tunnel in a gneiss formation which is characterized by high strength and low fracture intensity.As full observation of the rock conditions was prevented by the use of segmental lining, a geomechanical survey of the face was performed during maintenance downtime and the observed conditions were correlated with the machine performance parameters for that same day. A statistical analysis of the data shows that penetration rate correlates well with a slightly modified RMR index (in which the influence of the water conditions and joint orientation were discounted), but the most important factor is by far the partial rating of the RMR classification related to joint spacing only. However in tunnels characterized by greater variability in rock strength and joint conditions, it could be worthwhile using the complete RMR index.Given the toughness of the rock, failure of the cutter bearings and supports were a frequent occurrence during excavation. Owing to this factor the influence of rock quality on the rate of advance was found to be weak and the correlation more scattered.The results obtained for the Varzo tunnel were compared with those relative to other tunnels in granitic rocks and found to be in good agreement. However the relationships obtained should be considered valid only for this type of rock; machine behaviour could be found to be markedly different in other rock types, even where rock material strength and joint frequency are the same.  相似文献   

14.
A. Tu rul 《Engineering Geology》1998,50(3-4):337-345
The Atatürk dam was built across the Firat River on clayey limestone. A grout curtain, providing impermeability in the left and right abutments, was done in grouting galleries. The well known rock mass classification systems for tunneling purposes [rock structure rating (RSR), rock mass rating (RMR) and rock mass quality index (Q)] were used to classify the rock mass along these galleries. Based on RSR, RMR and Q values, the rock masses in the galleries have been classified into three different classes. Correlation between the three classification systems is discussed and suggestions are made for using rockbolt, shotcrete with wiremesh and steel ribs for supporting the rock mass.  相似文献   

15.
为了更方便地求出岩体的等价粘聚力C和摩擦角φ,基于Hoek-Brown准则与RMR法岩体质量分级,求出不同RMR值下的C和φ,拟合出C和φ的折减系数关于RMR值的变化曲线。结果表明:对于质量等级较好的岩体,根据RMR值可以分别求得岩体的C和φ的折减系数,对已知岩石的C和φ值进行折减,求得岩体的C和φ值。岩体的C值随岩石单轴抗压强度成线性正相关,岩体的φ值不随单轴抗压强度变化而变化。C和φ的折减系数不随岩石的单轴抗压强度变化而变化,只与岩体RMR值有关。   相似文献   

16.
Lining contact pressure and ground deformation of Raghadan transportation tunnel (Amman, Jordan) were investigated. The tunnel is 1.1 km in length and 13.5 m in diameter. This study was intended to integrate useful relations among the widely used rock classification system (RMR: rock mass rating), Hoek–Brown classification, and lining-ground interaction. The materials encountered along the tunnel alignment were limestone, dolomatic limestone, marly limestone, dolomite, and sillicified limestone. The ground conditions along the tunnel alignment including bedding planes, joint sets and joint conditions, rock quality, water flow, and rock strength were evaluated based on the drilled boreholes and rock exposures. Elasto-plastic finite element analyses were conducted to study the effect of rock mass conditions and tunnel face advance on the behavior of lining-ground interaction. The results of the analyses showed that lining contact pressure decreases linearly with the increase in RMR value. Also the results showed that tunnel lining contact pressure and crown inward displacement decreases with the increase in the unsupported distance (distance between tunnel face and the end of the erected lining). Ground displacement above the tunnel crown was found to be increases in an increasing rate with the decrease in the depth above the crown. This displacement was also found to be affected by the RMR value and the unsupported distance.  相似文献   

17.
施工期围岩快速分级是保证隧道施工安全和工程质量的关键措施。结合绩黄、宁绩高速公路隧道群施工期围岩分级实践,在大量现场测试和室内试验的基础上,提出了一种基于国标BQ分级的新分级体系,并给出了每个分级指标的现场快速测试方法。用新分级体系进行隧道施工期围岩的快速分级工作,并以分级结果作为进化支持向量回归算法分级的训练样本,建立了隧道围岩分级的进化支持向量回归智能模型。为了方便现场使用,依据支持向量回归理论,将智能模型进一步转化为初等函数数学模型,经隧道围岩分级实例验证了该初等函数数学模型的准确性,为隧道施工期围岩快速分级提供了一种简便的新方法。  相似文献   

18.
The results of geotechnical explorations, engineering geological investigation (including laboratory and in situ tests) and field observations have been used, along with borehole logging charts, to obtain the rock mass geotechnical data. Based on the data, the rock mass along the Sabzkuh water conveyance tunnel route was classified by rock mass rating (RMR), Q-system (Q), rock mass index (RMi) and geological strength index (GSI) (3 methods). A new series of correlations were established between the systems based on the data collected from the study area. These relationships were then compared with those reported in the literature, and two new relations were recommended. The classifications were utilized to calculate mechanical properties (rock mass strength and deformation modulus) of the rock mass along the tunnel according to available empirical relations, and to distinguish the upper-bound and lower-bound relations.  相似文献   

19.
The rock mass rating (RMR) and slope mass rating (SMR) has been carried out to classify the slope in terms of slope instability. To understand the RMR and SMR various geostructural, geomorphologic and hydrological parameters of the slopes were measured and analyzed. 32 rock slopes/rock cum debris slopes were identified in the study area. The present RMR and SMR study is an outcome of extensive field study along a stretch of about 10 km on road leading from Srinagar to Pauriarea along Alaknanda valley. The technique followed incorporates the relation between discontinuities and slope along with rock mass rating (RMR) and slope mass rating (SMR). The analysis of the 32 studied slopes shows that in the Gangadarshan area out of six rock slope facets, two falls in class II (stable) and four in class IV (unstable). It is significant to note that the slope facets coming under class IV are comprised of active landslide portions. While the slopes under class II show minor failure or old landslide debris.  相似文献   

20.
不同岩性及含水率的岩石声波传播规律试验研究   总被引:2,自引:0,他引:2  
陈旭  俞缙  李宏  蔡燕燕  张亚洲  穆康 《岩土力学》2013,34(9):2527-2533
利用智能声波仪对红砂岩、大理岩和花岗岩试样在干燥及饱和条件下进行了声波纵波透射试验,研究声波在岩石中传播的速度特征,同时利用傅里叶变换及小波变换研究声波在岩石中传播的波形、波幅衰减规律、波谱特征。结果表明: (1)红砂岩、大理岩和花岗岩在饱和状态下的纵波波速比其在干燥状态下略高。(2)岩石纵波速度受到岩石的致密程度、孔隙度、密度及硬度的影响。(3)在同样的激发信号下,饱水的砂岩、大理岩、花岗岩岩样声波信号能量集中在低频部分较多,而干燥岩样声波信号能量集中在高频部分较多。(4)饱水的3种岩样声波信号能量衰减较快,尾波不发育;干燥的3种岩样声波信号能量衰减较慢,尾波较发育。(5)穿过岩石的声波信号的波速、波形的时域特征、频域特征及时-频域特征能在一定程度上反映出岩石内部的孔隙及微裂隙的发育情况和岩石含水情况等特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号