首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Paleoecological records from two Holocene peat bogs in northern Germany are linked by two microscopic volcanic ash layers, correlated by petrology and geochemistry to explosive volcanism on Iceland. The younger “Microlite tephra” cannot be correlated to any known eruption, while the older tephra layer is identified as a deposit of the Hekla 3 eruption. The tephra layers are dated by an age–depth regression of accelerator mass spectrometry 14C ages that have been calibrated and combined in probability distributions. This procedure gives an age of 730–664 cal yr B.C. for the “Microlite tephra” event and 1087–1006 cal yr B.C. for the Hekla 3 event. Accordingly, the tephra layers were deposited during the late Bronze Age. At this time, human settlement slowly increased pressure on the environment, as indicated by changes in woodland pollen composition at the two bogs. The tephra-marker horizons further show that the palynologically defined transition from the Subboreal to the Subatlantic Period is synchronous in the investigated area. However, the macroscopic visible marker in peat, the change from fibrous to sapric peat, the “Schwarztorf-Weißtorf-Kontakt,” is asynchronous. Bog vegetation did not immediately react in unison to a climatic change at this pollen zone boundary; instead, the timing of vegetation change depended on the location within the bog.  相似文献   

2.
Several cryptotephra layers that originate from Icelandic volcanic eruptions with a volcanic explosivity index (VEI) of ≤ 4 and tephra volumes of < 1 km3 have previously been identified in Northern Europe, albeit within a restricted geographical area. One of these is the Hekla 1947 tephra that formed a visible fall-out in southern Finland. We searched for the Hekla 1947 tephra from peat archives within the previously inferred fall-out zone but found no evidence of its presence. Instead, we report the first identification of Hekla 1845 and Hekla 1510 cryptotephra layers outside of Iceland, the Faroe Islands, Ireland and the UK. Additionally, Hekla 1158 tephra was found in Finland for the first time. Our results confirm that Icelandic eruptions of moderate size can form cryptotephra deposits that are extensive enough to be used in inter-regional correlations of environmental archives and carry a great potential for refining regional tephrochronological frameworks. Our results also reveal that Icelandic tephra has been dispersed into Finnish airspace at least seven times during the past millennium and in addition to a direct eastward route the ash clouds can travel either via a northerly or a southerly transport pathway.  相似文献   

3.
The volcanic ash or ‘tephra’ cloud resulting from the relatively small (volume and VEI) eruption of the Icelandic volcano Eyjafjallajökull in 2010 caused major air travel disruption, at substantial global economic cost. On several occasions in the past few centuries, Icelandic eruptions have created ash and/or sulphur dioxide clouds which were detected over Europe (e.g. Hekla in 1947, Askja in 1875, and Laki in 1783). However, these historical observations do not represent a complete record of events serious enough to disrupt aviation in Europe. The only feasible evidence for this is within the geological tephra record. Ash layers are preserved in bogs and lakes where tephra deposited from the atmosphere is incorporated in the peat/mud. In this article we: 1, introduce the analysis of the Northern European sedimentary tephra record; 2, discuss our findings and modelling results; 3, highlight how these were misinterpreted by the popular media; and 4, use this experience to outline several existing problems with current tephra studies and suggest agendas for future research.  相似文献   

4.
Volcanic ash can disperse thousands of kilometres from the source volcano and provide valuable chronostratigraphic markers for palaeoclimate studies. We present new cryptotephra findings of historical and modern Icelandic eruptions in annually laminated lacustrine sediment records from several sites within a 570 km SW–NE transect across northern Poland. Sediments from the two lakes Wąsoskie and Szurpiły contain glass shards originating from the Plinian Askja ad 1875 eruption and showing bimodal, rhyolitic and dacitic affinities. A further cryptotephra finding in Lake Lubińskie suggests a potential origin from the Hekla ad 1845 eruption. These new findings extend the tephra dispersal map towards the south-east and provide valuable isochrons for the synchronisation of palaeoclimate proxy data at the termination of the Little Ice Age in central eastern Europe. Very low glass concentrations of modern cryptotephra in Lake Wąsoskie were potentially correlated with the Eyjafjallajökull ad 2010 eruption. Further findings in the uppermost sediments of lakes Szurpiły and Żabińskie in north-eastern Poland tentatively suggest other sources from either the Hekla and/or Kamchatkan volcanoes.  相似文献   

5.
During the Holocene the volcano Hekla explosively emitted highly silicic tephra on four occasions. The ash was widely dispersed by the wind. Distinctive light-coloured ash layers are now to be seen in the peats of Northern Iceland. Ash from the 1104 AD eruption was carried as far as Scandinavia. The most recent three tephra are preserved in the top 6 m of sediment in Lake Svinavatn. Chemical data from the sediment of Lake Svinavatn, which lies near the north coast of Iceland 170 km from Hekla, reveal the presence of silicic ash above the tephra visible to the naked eye. Unlike the vertical spread of ash in ocean sediment cores which results from biological mixing effects, the upwards spread of ash in the Svinavatn lake sediment cores appears to have been produced by erosion of ash from the lake catchment in the decades following the eruptions. The variations in concentrations of 11 elements, as determined by neutron activation analysis, can be explained by an exponentially decreasing input from catchment erosion. The additional input to each of the three Hekla ash layers was in the region of 3% of the ash which fell on the Svinavatn catchment.  相似文献   

6.
Large Plinian eruptions from Hekla volcano, Iceland, produce compositionally zoned tephra used as key markers in tephrochronology. However, spatial variations in chemical composition of a tephra layer may complicate its identification. An example is the 5950–6180 cal a bp Hekla Ö tephra layer, which shows compositional spread from rhyolite, dacite and andesite to basalt. In soil sections north of Hekla, the SiO2 content of the tephra glass reaches 76 wt% in the lowest unit of the Hekla Ö deposit and decreases to 62–63 wt% in the uppermost unit. Intermingled within the whole deposit are basalt tephra grains having 46–47 wt% SiO2. The composition of the basalt glass includes primitive basalt and a more evolved basalt (MgO >6 and <6 wt%, respectively). Together with literature data, the Hekla Ö tephra and the so-called T-Tephra/Hekla-T are most likely from contemporaneous eruptions of different vents on the Hekla volcanic system, forming a single important marker tephra (Hekla ÖT) deposited over 80% of Iceland. Identification is complicated by its spatial compositional heterogeneity, such as systematic decrease in SiO2 content from the east to the west of Hekla volcano. Consequently, an individual tephra layer from a large explosive eruption can have different composition at different locations. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
A Holocene tephra record from the Lofoten Islands, Arctic Norway   总被引:2,自引:0,他引:2  
Pilcher, J., Bradley, R. S., Francus, P. & Anderson, L. 2005 (May): A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas , Vol. 34, pp. 136–156. Oslo. ISSN 0300–9483.
A tephrochronology has been established for a peat bog in the Lofoten Islands that provides a dating framework for future lake and bog studies of climate variation in this climatically sensitive area. Twenty-three tephra layers were identified, all apparently of Icelandic origin. These included the historically dated tephras of AD 1875 (Askja), AD 1362 (Öraefajökull), AD 1158 (Hekla), AD 1104 (Hekla) and the Landnam tephra identified at AD 875 in the GRIP ice core. Other layers, previously radiocarbon dated in Ireland and elsewhere, include the Hekla eruptions of c. 2310 BC and c. 5990 BC. The basal clays below the peat contain tephra of both the Askja eruption of c. 9500 BC (10 000 radiocarbon years BP) and the well-known Vedde Ash of c. 12 000 BP (10 030 80 BC in GRIP ice core).  相似文献   

8.
The mid-Holocene eruption of Aniakchak volcano (Aniakchak II) in southwest Alaska was among the largest eruptions globally in the last 10,000 years (VEI-6). Despite evidence for possible impacts on global climate, the precise age of the eruption is not well-constrained and little is known about regional environmental impacts. A closely spaced sequence of radiocarbon dates at a peatland site over 1000 km from the volcano show that peat accumulation was greatly reduced with a hiatus of approximately 90–120 yr following tephra deposition. During this inferred hiatus no paleoenvironmental data are available but once vegetation returned the flora changed from a Cyperaceae-dominated assemblage to a Poaceae-dominated vegetation cover, suggesting a drier and/or more nutrient-rich ecosystem. Oribatid mites are extremely abundant in the peat at the depth of the ash, and show a longer-term, increasingly wet peat surface across the tephra layer. The radiocarbon sample immediately below the tephra gave a date of 1636–1446 cal yr BC suggesting that the eruption might be younger than previously thought. Our findings suggest that the eruption may have led to a widespread reduction in peatland carbon sequestration and that the impacts on ecosystem functioning were profound and long-lasting.  相似文献   

9.
This paper presents one of the most extensive Holocene tephra records found to date in Scandinavia. Microtephra horizons originating from Icelandic eruptions were recorded in two ca. 2 m thick peat profiles at Klocka Bog in west‐central Sweden. Five of the microtephra horizons were geochemically correlated to the Askja‐1875, Hekla‐3, Kebister, Hekla‐4 and Lairg A tephras respectively. Radiocarbon‐based dating of these tephras broadly agree with previously published ages from Iceland, Sweden, Germany and the British Isles. The identification of the Lairg A tephra demonstrates a more widespread distribution than previously thought, extending the usefulness of Icelandic Holocene tephrochronology further north into west‐central Scandinavia. Long‐lasting snow cover and seasonal wind distribution in the lower stratosphere are suggested as factors that may be responsible for fragmentary tephra deposition patterns in peat deposits of subarctic Scandinavia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Floating tephra was deposited together with ice core,snow layer,abyssal sediment,lake sediments,and other geological records.It is of great significance to interpret the impact on the climate change of volcanic eruptions from these geological records.It is the first time that volcanic glass was discovered from the peat of Jinchuan(金川)Maar,Jilin(吉林)Province,China.And it is in situ sediments from a near-source explosive eruption according to particle size analysis and identification results.The tephra were neither from Tianchi(天池)volcano eruptions,Changbai(长白)Mountain,nor from Jinlongdingzi(金龙顶子)volcano about 1 600 aBP eruption,but maybe from an unknown eruption of Longgang(龙岗)volcano group according to their geochemistry and distribution.Geochemical characters of the tephra are similar to those of Jingiongdingzi,which are poor in s.Jica,deficient in alkali,Na20 content is more than K20 content,and are similar to distribution patterns of REE and incompatible elements,which helps to speculate that they originated from the same mantle magma with rare condemnation,and from basaltic explosive eruption of Longgang volcano group.The tephra,from peat with age proved that the eruption possibly happened in 15 BC-26 AD,is one of Longgang volcano group eruption that was not recorded and is earlier than that of Jinglongdingzi about 1 600 aBP eruption.And the sedimentary time of tephra is during the period of low temperature alteration.which may be the influence of eruption toward the local climate according to the correlativity of eruption to local temperature curve of peat cellulose oxygen isotope.  相似文献   

11.
From the Sellevollmyra bog at Andøya, northern Norway, a 440‐cm long peat core covering the last c. 7000 calendar years was examined for humification, loss‐on‐ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle‐match of 35 14C dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified (periods of the most fundamental changes in italics): 6410–6380, 6230–6050, 5730–5640, 5470–5430, 5340–5310, 5270–5100, 4790–4710, 4890–4820, 4380–4320, 4220–4120, 4000–3810, 3610–3580, 3370–3340 (regionally 2850–2750; in Sellevollmyra a hiatus between 2960–2520), 2330–2220, 1950, 1530–1450, 1150–840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla‐4 tephra layer started some decades before the eruption event.  相似文献   

12.
《第四纪科学杂志》2017,32(4):457-462
Despite the discovery of cryptotephra layers in over 100 peatlands across northern Europe, Holocene cryptotephra layers have not previously been reported from Polish peatlands. Here we present the first Holocene tephra findings from two peatlands in northern Poland. At Bagno Kusowo peatland we identify the most easterly occurrence of the AD 860 B tephra, recently correlated to the White River Ash (WRAe) derived from Mount Churchill, Alaska. A shorter core from Linje peatland contains tephra from the Askja 1875 eruption, extending the spatial distribution and regional importance of this Icelandic tephra in Eastern Europe. Our research indicates the potential of cryptotephra layers to date and correlate the growing number of palaeoenvironmental studies being conducted on Polish peatlands and contributes towards the development of a regional Holocene tephrostratigraphy for Poland. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
  相似文献   

13.
This article reports the first discovery of middle Holocene cryptotephra from a peat sequence in Estonia, eastern Baltic. Two sequences, Mustjärve and Parika (located 110 km apart), were chosen for a pilot study aimed at finding traces of tephra fallout during the middle Holocene. Peat accumulation at both sites started in the early Holocene (c. 9500–9000 14C yr BP; c . 11 000–10000 cal. yr BP) and continued throughout the whole Holocene. The radiocarbon-dated intervals between c. 2000 and 5000 14C yr BP (c. 2000–5500 cal. yr BP) were chosen from both sites for the study. Colourless tephra shards were identified at 312–316 cm below the peat surface in the Mustjärve peat sequence, while no tephra was found in peat of the same age at Parika. Electron microprobe analyses suggest a correlation with the initial phase of the Hekla-4 eruption (c. 4260 cal. yr BP), although the age-depth model indicated an age around 4900 cal. yr BP. Small concentrations of colourless to light brown tephra shards at 266–270 cm in the Mustjärve sequence indicate that the Kebister tephra (c. 3750 cal. yr BP) might also be present, but geochemical analyses were not possible. The low concentration and small size of the tephra particles indicate that Estonian bogs are probably on the verge of where tephrochronology is possible in northwestern Europe. Further studies of full Holocene sequences are required in order to discover traces of other ash plumes reaching as far east as the eastern Baltic area.  相似文献   

14.
A little goes a long way: discovery of a new mid-Holocene tephra in Sweden   总被引:1,自引:0,他引:1  
This pilper reports the presence of a volcanic ash layer in western Sweden which is geochemically identiticd as the Kebister tephra. This tephrdpresenceof (dated c . 3600 14C BP) was discovered at Kebister, Shetland and thc rcsults presented here indicate that the deposit may have a greater geographical distribution than previously thought. The geochemistry of the volcanic glass was analysed by using discrete grain electron probe microanalysis (EPMA). Thc SiO2 content of the glass ranges from 66.19 to 71.96%, FeO content 2.73 to 6.07% and MgO content 0.15 to 0.57%˜ The tephra can he distinguished from the more widespread Hekla 4 tephra ( c . 3800 14C BP) on the basis of calcium and magnesium contents.  相似文献   

15.
Nine tephra layers in marine sediment cores (MD99‐2271 and MD99‐2275) from the North Icelandic shelf, spanning the Late Glacial and the Holocene, have been investigated to evaluate the effectiveness of methods to detect tephra layers in marine environments, to pinpoint the stratigraphic level of the time signal the tephra layers provide, and to discriminate between primary and reworked tephra layers in a marine environment. These nine tephra layers are the Borrobol‐like tephra, Vedde Ash, Askja S tephra, Saksunarvatn ash, and Hekla 5, Hekla 4, Hekla 3, Hekla 1104 and V1477 tephras. The methods used were visual inspection, magnetic susceptibility, X‐ray photography, mineralogical counts, grain size and morphological measurements, and microprobe analysis. The results demonstrate that grain size measurements and mineralogical counts are the most effective methods to detect tephra layers in this environment, revealing all nine tephra layers in question. Definition of the tephra layers revealed a 2–3 cm diffuse upper boundary in eight of the nine tephra layers and 2–3 cm diffuse lower boundary in two tephra layers. Using a multi‐parameter approach the stratigraphic position of a tephra layer was determined where the rate of change of the parameters tested was the greatest compared with background values below the tephra. The first attempt to use grain morphology to distinguish between primary and reworked tephra in a marine environment suggests that this method can be effective in verifying whether a tephra layer is primary or reworked. Morphological measurements and microprobe analyses in combination with other methods can be used to identify primary tephra layers securely. The study shows that there is a need to apply a combination of methods to detect, define (the time signal) and discriminate between primary and reworked tephra in marine environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The Eyjafjöll AD 2010 eruption is an extraordinary event in that it led to widespread and unprecedented disruption to air travel over Europe – a region generally considered to be free from the hazards associated with volcanic eruptions. Following the onset of the eruption, satellite imagery demonstrated the rapid transportation of ash by westerly winds over mainland Europe, eventually expanding to large swathes of the North Atlantic Ocean and the eastern seaboard of Canada. This small‐to‐intermediate size eruption and the dispersal pattern observed are not particularly unusual for Icelandic eruptions within a longer‐term perspective. Indeed, the Eyjafjöll eruption is a relatively modest eruption in comparison to some of the 20 most voluminous eruptions that have deposited cryptotephra in sedimentary archives in mainland Europe, such as the mid Younger Dryas Vedde Ash and the mid Holocene Hekla 4 tephra. The 2010 eruption, however, highlights the critical role that weather patterns play in the distribution of a relatively small amount of ash and also highlights the spatially complex dispersal trajectories of tephra in the atmosphere. Whether or not the preservation of the Eyjafjöll 2010 tephra in European proxy archives will correspond to the extensive distributions mapped in the atmosphere remains to be seen. The Eyjafjöll 2010 event highlights our increased vulnerability to natural hazards rather than the unparalleled explosivity of the event. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Cryptotephrochronology, the use of hidden, diminutive volcanic ash layers to date sediments, has rarely been applied outside western Europe but has the potential to improve the tephrochronology of other regions of the world. Here we present the first comprehensive cryptotephra study in Alaska. Cores were extracted from five peatland sites, with cryptotephras located by ashing and microscopy and their glass geochemistry examined using electron probe microanalysis. Glass geochemical data from nine tephras were compared between sites and with data from previous Alaskan tephra studies. One tephra present in all the cores is believed to represent a previously unidentified eruption of Mt. Churchill and is named here as the ‘Lena tephra’. A mid-Holocene tephra in one site is very similar to Aniakchak tephra and most likely represents a previously unidentified Aniakchak eruption, ca. 5300-5030 cal yr BP. Other tephras are from the late Holocene White River eruption, a mid-Holocene Mt. Churchill eruption, and possibly eruptions of Redoubt and Augustine volcanoes. These results show the potential of cryptotephras to expand the geographic limits of tephrochronology and demonstrate that Mt. Churchill has been more active in the Holocene than previously appreciated. This finding may necessitate reassessment of volcanic hazards in the region.  相似文献   

18.
This paper presents geochemical profiles of a tephra-bearing minerotrophic peat column from NE-Iceland obtained using various elemental analyses of the solid phase and the pore water. The influence of tephra grain size, thickness and composition of each tephra on the peat geochemistry was investigated. Interpretations are supported by a statistical approach, in particular by autocorrelation, and by microscopy observations. Minerotrophic peat geochemistry may be strongly dependent upon post-depositional mobilization and possible leaching of elements as demonstrated by Fe and trace metal concentration profiles. Chemical elements, and more specifically potentially harmful metals, can be slowly leached out of volcanic falls during their weathering and re-accumulate downwards. It is emphasised that a tephra deposit can act as an active geochemical barrier, blocking downward elemental movements and leading to the formation of enriched layers. In this study, the formation of poorly amorphous Fe phases above the Hekla 3 tephra is shown. These poorly crystalline Fe phases scavenged Ni.  相似文献   

19.
A combination of AMS14C dating and tephrochronology has been used to date late Holocene oceanographic events in a 335 cm marine record, covering about 4600 cal. yr with sedimentation rates exceeding 80 cm 1000 yr−1. The core site is located 50 km offshore on the northern Icelandic shelf. Tephra markers from Iceland serve to correlate the marine and terrestrial records. Especially notable is the presence of three geochemically correlated tephra markers from the Icelandic volcano Hekla (Hekla 4, Hekla 3 and Hekla 1104). Benthic and planktonic foraminiferal abundance and distribution as well as the petrography of the sand fraction of the muddy shelf sediments are used as palaeoceanographic proxies. The foraminiferal assemblages reflect a general cooling trend during the last 4600 yr. A marked drop in sea‐surface temperatures is registered at about 3000 cal. yr BP, corresponding to the level of the Hekla 3 tephra. There is faunal indication of temperature amelioration during the Medieval Warm Period and a cooling again during the Little Ice Age. Periods of ice rafting events are indicated by ice rafted debris (IRD) concentrations, e.g. at around 3000 cal. yr BP and during the Little Ice Age. The former event occurred just prior to the deposition of the Hekla 3 tephra marker, the largest Holocene Hekla eruption. A correlation with terrestrial climatic events in Iceland is presented. A standard marine reservoir correction of 400 14C yr appears to be reasonable, at least during periods with high influence of water masses from the Irminger Current on the northern Icelandic shelf. An increase to ca. 530 14C yr may have occurred, however, when water masses derived from the East Greenland Current were dominant in the area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The generation of reliable age models for palaeoenvironmental and archaeological records in the Eurasian Arctic is often problematic when using conventional dating techniques. Tephrochronology can potentially improve the chronologies of such records and synchronise disparate sedimentary archives. However, to date, systematic tephra studies are lacking for this region. This paper presents the first cryptotephra data from the White Sea region (northwestern Russia) based on a peat core spanning the past ~1800 years. We identify seven geochemical glass populations that derive from six Icelandic volcanoes and correlate four of them to north European tephra isochrons; these include Askja ad 1875, the basaltic component of the ad 877 Landnám tephra, and tephras BTD-15 (c. ad 1750–1650) and SL-2/SB-2 (ad 803–767) from unknown eruptions of Katla and Snæfellsjökull, respectively. The remaining three populations originate from Grímsvötn, Hekla and Katla; however, their attribution to individual eruptions remains ambiguous. These findings highlight the potential to extend the Late Holocene tephrochronological framework of northern Europe to the west Eurasian Arctic. The detection of at least three basaltic tephras in the core suggests that basaltic shards can be transported over larger distances than previously known and that peatlands are well suited to preserve such components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号