首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
差分码偏差(DCB)是电离层建模与导航定位授时的主要误差源,北斗多频多通道信号衍生出一系列新的DCB。本文首先分析了北斗三号卫星的码观测值组合及可估的DCB类型,建立了北斗三号卫星多频码偏差估计的数学模型,利用IGS实测数据首次估计得到了22种不同类型的北斗DCB。在此基础上,全面比较分析了各类DCB的内符合精度、外符合精度及月稳定度。结果表明,北斗三号卫星各类DCB的闭合差基本都在0.2 ns以内,具有较好的内符合精度;估计结果与中科院(CAS)、德国宇航中心(DLR)提供的DCB产品具有一致性,与CAS的6种DCB偏差基本在0.1 ns以内,与DLR的4种DCB偏差基本在0.2 ns以内;由于误差传递的影响,通过线性转换得到DCB值的精度和可靠性不及DCB直接估计量;北斗三号卫星各类DCB的月平均标准差为0.083 ns,具有较好的中长期稳定性;相较于北斗二号卫星,北斗三号卫星的DCB稳定性相对更优。  相似文献   

3.
Global navigation satellite systems (GNSS) have been widely used to monitor variations in the earth’s ionosphere by estimating total electron content (TEC) using dual-frequency observations. Differential code biases (DCBs) are one of the important error sources in estimating precise TEC from GNSS data. The International GNSS Service (IGS) Analysis Centers have routinely provided DCB estimates for GNSS satellites and IGS ground receivers, but the DCBs for regional and local network receivers are not provided. Furthermore, the DCB values of GNSS satellites or receivers are assumed to be constant over 1?day or 1?month, which is not always the case. We describe Matlab code to estimate GNSS satellite and receiver DCBs for time intervals from hours to days; the software is called M_DCB. The DCBs of GNSS satellites and ground receivers are tested and evaluated using data from the IGS GNSS network. The estimates from M_DCB show good agreement with the IGS Analysis Centers with a mean difference of less than 0.7?ns and an RMS of less than 0.4?ns, even for a single station DCB estimate.  相似文献   

4.
GIM和不同约束条件相结合的BDS差分码偏差估计   总被引:1,自引:0,他引:1  
姚宜斌  刘磊  孔建  冯鑫滢 《测绘学报》2017,46(2):135-143
现阶段BDS卫星和地面跟踪站数量较少,用BDS单系统获取的DCB精度有限,针对此问题,本文基于CODE GIM,采用两种不同的"零均值"基准约束方案(分别称为约束1和约束2),选取2015年(DOY002-090)MGEX的BDS数据,求解BDS的DCB,并对其进行精度评估。结果表明,两种约束方案下,卫星DCB差值整体趋势一致,DCBC2I-C7I、DCBC2I-C6I的系统性偏差分别约为-3.3ns和1.2ns,接收机DCB的系统性偏差与卫星DCB大小相同,符号相反。相对于约束1,施加约束2后,IGSO和MEO卫星DCB估值更加稳定(DCBC2I-C7ISTD最大改善21%,DCBC2I-C6ISTD最大改善13%),IGSO和MEO卫星的稳定性(分别在0.1ns和0.2ns左右)优于GEO卫星(0.150.32ns)。约束2的DCB估值效果不仅与CAS/DLR产品有较好的一致性(Bias:-0.40.2ns),而且顾及了BDS卫星DCB间的稳定性差异。两种约束方案下,BDS接收机DCB的STD无明显变化,说明约束的选择对BDS接收机DCB的稳定性无明显影响。BDS接收机DCB稳定性整体上优于1ns,中高纬度区域较好(STD 0.4ns左右),低纬度区域稍差(STD 0.81ns)。  相似文献   

5.
As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.  相似文献   

6.
李昕  郭际明  周吕  覃发超 《测绘学报》2016,45(8):929-934
提出了一种精确估计区域北斗接收机硬件延迟(DCB)的方法。该方法不需要传统复杂的电离层模型,在已知一个参考站接收机硬件延迟的条件下,利用正常情况下电离层延迟量和卫星-接收机几何距离强相关这一特点,采用站间单差法来精确估计区域内BDS接收机的硬件延迟。试验结果表明,该方法单站估计的单站北斗接收机连续30d的硬件延迟RMS在0.3ns左右。通过GEO卫星双频观测值扣除已知卫星DCB和本文方法估计的接收机DCB,计算对应穿刺点一天的VTEC并和GIM格网内插结果并进行比对分析,二者大小和变化趋势均符合较好,进一步验证了本文提出的方法具有可靠性。  相似文献   

7.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

8.
The differential code bias (DCB) in satellites of the Global Navigation Satellite Systems (GNSS) should be precisely corrected when designing certain applications, such as ionospheric remote sensing, precise point positioning, and time transfer. In the case of COMPASS system, the data used for estimating DCB are currently only available from a very limited number of global monitoring stations. However, the current GPS/GLONASS satellite DCB estimation methods generally require a large amount of geographically well-distributed data for modeling the global ionospheric vertical total electron content (TEC) and are not particularly suitable for current COMPASS use. Moreover, some satellites with unstable DCB (i.e., relatively large scatter) may affect other satellite DCB estimates through the zero-mean reference that is currently imposed on all satellites. In order to overcome the inadequacy of data sources and to reduce the impact of unstable DCB, a new approach, designated IGGDCB, is developed for COMPASS satellite DCB determination. IGG stands for the Institute of Geodesy and Geophysics, which is located in Wuhan, China. In IGGDCB, the ionospheric vertical TEC of each individual station is independently modeled by a generalized triangular series function, and the satellite DCB reference is selected using an iterative DCB elimination process. By comparing GPS satellite DCB estimates calculated by the IGGDCB approach based on only a handful (e.g., seven) of tracking stations against that calculated by the currently existing methods based on hundreds of tracking stations, we are able to demonstrate that the accuracies of the IGGDCB-based DCB estimates perform at the level of about 0.13 and 0.10?ns during periods of high (2001) and low (2009) solar activity, respectively. The iterative method for DCB reference selection is verified by statistical tests that take into account the day-to-day scatter and the duration that the satellites have spent in orbit. The results show that the impact of satellites with unstable DCB can be considerably reduced using the IGGDCB method. It is also confirmed that IGGDCB is not only specifically valid for COMPASS but also for all other GNSS.  相似文献   

9.
差分码偏差(differential code bias,DCB)是指由全球导航卫星系统(global navigation satellite system, GNSS)信号接收和发射硬件导致的频率相关的偏差项,对电离层估计有显著的影响,在利用GNSS观测数据提取电离层总电子含量时需要被精确修正,研究利用低轨卫星的星载GNSS观测数据估计DCB尤为重要。使用Swarm星座3颗卫星GPS接收机2016年1月的双频观测值,设计了独立估计和联合估计两种估计方案,采用附加限制条件的间接平差方法对GPS卫星以及星载接收机的DCB进行估计。以中国科学院和德国宇航中心的DCB产品作为参考,分析了两种估计方案的精度和稳定性,相较于独立估计方案,联合估计方案得到的GPS卫星DCB的稳定性较独立估计方案提高了16.6%,且与参考DCB具有更好的一致性。  相似文献   

10.
The Global Positioning System (GPS) and Galileo will transmit signals on similar frequencies, that is, the L1–E1 and L5–E5a frequencies. This will be beneficial for mixed GPS and Galileo applications in which the integer carrier phase ambiguities need to be resolved, in order to estimate the positioning unknowns with centimeter accuracy or better. In this contribution, we derive the mixed GPS + Galileo model that is based on “inter-system” double differencing, that is, differencing the Galileo phase and code observations relative to those corresponding to the reference or pivot satellite of GPS. As a consequence of this, additional between-receiver inter-system bias (ISB) parameters need to be solved as well for both phase and code data. We investigate the size and variability of these between-receiver ISBs, estimated from L1 and L5 observations of GPS, as well as E1 and E5a observations of the two experimental Galileo In-Orbit Validation Element (GIOVE) satellites. The data were collected using high-grade multi-GNSS receivers of different manufacturers for several zero- and short-baseline setups in Australia and the USA. From this analysis, it follows that differential ISBs are only significant for receivers of different types and manufacturers; for baselines formed by identical receiver types, no differential ISBs have shown up; thus, implying that the GPS and GIOVE data are then fully interoperable. Fortunately, in case of different receiver types, our analysis also indicates that the phase and code ISBs may be calibrated, since their estimates, based on several datasets separated in time, are shown to be very stable. When the single-frequency (E1) GIOVE phase and code data of different receiver types are a priori corrected for the differential ISBs, the short-baseline instantaneous ambiguity success rate increases significantly and becomes comparable to the success rate of mixed GPS + GIOVE ambiguity resolution based on identical receiver types.  相似文献   

11.
GPS Differential Code Biases (DCBs) computation is usually based on ground networks of permanent stations. The drawback of the classical methods is the need for the ionospheric delay so that any error in this quantity will map into the solution. Nowadays, many low-orbiting satellites are equipped with GPS receivers which are initially used for precise orbitography. Considering spacecrafts at an altitude above the ionosphere, the ionized contribution comes from the plasmasphere, which is less variable in time and space. Based on GPS data collected onboard JASON-2 spacecraft, we present a methodology which computes in the same adjustment the satellite and receiver DCBs in addition to the plasmaspheric vertical total electron content (VTEC) above the satellite, the average satellite bias being set to zero. Results show that GPS satellite DCB solutions are very close to those of the IGS analysis centers using ground measurements. However, the receiver DCB and VTEC are closely correlated, and their value remains sensitive to the choice of the plasmaspheric parametrization.  相似文献   

12.
全球导航卫星系统(Global Navigation Satellite System,GNSS)探测大气电离层需要精确处理由接收机差分码偏差(differential cade bias,DCB)引起的系统误差。准确掌握接收机DCB的多时间尺度精细变化等特性是联合美国GPS、中国北斗卫星导航系统(BeiDou navigation satellite system,BDS)和欧盟Galileo等多GNSS技术监测电离层所面临的主要科学问题之一。为此,提出了基于零基线精密估计站间单差接收机DCB的方法,并对站间单差接收机DCB的日加权平均值进行了分析。基于4台多模接收机采集于2013年的双频观测值,揭示了站间单差接收机DCB的变化可能受3种因素的影响,即接收机内置软件的版本升级(实验中引起了约3 ns的显著增加)、拆卸个别接收机所导致的观测条件改变(实验中引起了约1.3 ns的显著减少)和估计方法的误差(引起了与导航系统卫星几何结构重复性相一致的周期性变化)等。  相似文献   

13.
The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU.  相似文献   

14.
Considering the contribution of the hardware biases to the estimated clock errors, an improved method for estimating the satellite inter-frequency clock bias (IFCB) is presented, i.e., the difference in the satellite clock error as computed from ionospheric-free pseudorange and carrier phase observations using L1/L2 and P1/P2 versus L1/L5 and P1/P5. The IFCB is composed of a constant and a variable part. The constant part is the inter-frequency hardware bias (IFHB). It contains the satellite and receiver hardware delays and can be expressed as a function of the DCBs [DCB (P1 ? P2) and DCB (P1 ? P5)]. When a reference satellite is selected, the satellite IFHB can be computed but is biased by a reference satellite IFHB. This bias will not affect the utilization of IFCB in positioning since it can be absorbed by the receiver clock error. Triple-frequency observations of 30 IGS stations between June 1, 2013, and May 31, 2014, were processed to show the variations of the IFHB. The IFHB values show a long-term variation with time. When a linear and a fourth-order harmonic function are used to model the estimated IFCB, which contains contributions of the hardware delays and clock errors, the results show that 89 % of the IFCB can be corrected given the current five triple-frequency GPS satellites with the averaged fitting RMS of 1.35 cm. Five days of data are processed to test the estimated satellite clock errors using the strategy presented. The residuals of P1/P5 and L1/L5 have a STD of <0.27 m and 0.97 cm, respectively. In addition, most predicted satellite IFCBs reach an accuracy of centimeter level and its mean accuracy of 5 days is better than 7 cm.  相似文献   

15.
A new algorithm for single receiver DCB estimation using IGS TEC maps   总被引:5,自引:2,他引:3  
Maxim Keshin 《GPS Solutions》2012,16(3):283-292
A new algorithm for single receiver DCB estimation using GIM vertical TEC gridded values is proposed. It estimates receiver DCB and vertical residual ionospheric delays using the least squares approach with linear constraints. The performance of the proposed algorithm was assessed by comparing estimated receiver DCBs with those provided by the IGS. The same comparisons were done using two other algorithms for receiver DCB estimation. It is demonstrated that the proposed algorithm is capable of reproducing IGS DCB values at the level of 0.1?C0.3?ns, which is better than the level of agreement observed for the other two algorithms. For our tests, we considered data from more than 100 IGS stations, daily, such that all major regions of the world were covered. Besides, both ionospherically quiet and disturbed days were considered. It provides some evidence that the aforementioned level of agreement with IGS receiver DCB values does not significantly dependent on geographical region and the state of the ionosphere. The algorithm is easy to implement and can be considered for online use.  相似文献   

16.
The global positioning system (GPS) differential code biases (DCB) provided by the International GNSS Service (IGS) show solar-cycle-like variation during 2002–2013. This study is to examine whether this variation of the GPS DCBs is associated with ionospheric variability. The GPS observations from low earth orbit (LEO) satellites including CHAMP, GRACE and Jason-1 are used to address this issue. The GPS DCBs estimated from the LEO-based observations at different orbit altitudes show a similar tendency as the IGS DCBs. However, this solar-cycle-like dependency is eliminated when the DCBs of 13 continuously operating GPS satellites are constrained to zero-mean. Our results thus revealed that ionospheric variation is not responsible for the long-term variation of the GPS DCBs. Instead, it is attributed to the GPS satellite replacement with different satellite types and the zero-mean condition imposed on all satellite DCBs.  相似文献   

17.
Global Positioning System (GPS) total electron content (TEC) measurements, although highly precise, are often rendered inaccurate due to satellite and receiver differential code biases (DCBs). Calculated satellite DCB values are now available from a variety of sources, but receiver DCBs generally remain an undertaking of receiver operators and processing centers. A procedure for removing these receiver DCBs from GPS-derived ionospheric TEC at high latitudes, using Canadian Advanced Digital Ionosonde (CADI) measurements, is presented. Here, we will test the applicability of common numerical methods for estimating receiver DCBs in high-latitude regions and compare our CADI-calibrated GPS vertical TEC (vTEC) measurements to corresponding International GNSS Service IONEX-interpolated vTEC map data. We demonstrate that the bias values determined using the CADI method are largely independent of the topside model (exponential, Epstein, and α-Chapman) used. We further confirm our results via comparing bias-calibrated GPS vTEC with those derived from incoherent scatter radar (ISR) measurements. These CADI method results are found to be within 1.0 TEC units (TECU) of ISR measurements. The numerical methods tested demonstrate agreement varying from within 1.6 TECU to in excess of 6.0 TECU when compared to ISR measurements.  相似文献   

18.
Various types of onboard atomic clocks such as rubidium, cesium and hydrogen have different frequency accuracies and frequency drift rate characteristics. A passive hydrogen maser (PHM) has the advantage of low-frequency drift over a long period, which is suitable for long-term autonomous satellite time keeping. The third generation of Beidou Satellite Navigation System (BDS3) is equipped with PHMs which have been independently developed by China for their IGSO and MEO experimental satellites. Including Galileo, it is the second global satellite navigation system that uses PHM as a frequency standard for navigation signals. We briefly introduce the PHM design at the Shanghai Astronomical Observatory (SHAO) and detailed performance evaluation of in-orbit PHMs. Using the high-precision clock values obtained by satellite-ground and inter-satellite measurement and communication systems, we analyze the frequency stability, clock prediction accuracy and clock rate variation characteristics of the BDS3 experimental satellites. The results show that the in-orbit PHM frequency stability of the BDS3 is approximately 6 × 10?15 at 1-day intervals, which is better than those of other types of onboard atomic clocks. The BDS3 PHM 2-, 10-h and 7-day clock prediction precision values are 0.26, 0.4 and 2.2 ns, respectively, which are better than those of the BDS3 rubidium clock and most of the GPS Block IIF and Galileo clocks. The BDS3 PHM 15-day clock rate variation is ? 1.83 × 10?14 s/s, which indicates an extremely small frequency drift. The 15-day long-term stability results show that the BDS3 PHM in-orbit stability is roughly the same as the ground performance test. The PHM is expected to provide a highly stable time and frequency standard in the autonomous navigation case.  相似文献   

19.
Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only the regional GPS network is used. Because DCB estimation is highly correlated with ionospheric modeling, this degradation is particularly evident for measurements concentrated in an area of high TEC concentration. This study proposes a DCB estimation method that uses the long-term stability of the DCB to improve the estimation performance of the regional GPS network. We estimate satellite DCBs by assuming their constancy over seven months. This extended period increases the number of measurements used in DCB estimation and changes the local time distribution of collected measurements. As a result, the unbalanced distribution of specific ionospheric conditions disappears. Tests are performed using both global and regional networks, and the estimation performance is evaluated based on the position error and pseudorange residuals. First, the difference between the global and regional networks when using the conventional method is analyzed. Second, proposed methods are applied to regional networks. The proposed method can improve the DCB estimation performance, and the results are similar to those obtained using one-day global network data.  相似文献   

20.
A modified mixed-differenced approach for estimating multi-GNSS real-time clock offsets is presented. This approach, as compared to the earlier presented mixed-differenced approach which uses epoch-differenced and undifferenced observations, further adds a satellite-differenced process. The proposed approach, based on real-time orbit products and a mix of epoch-differenced and satellite-differenced observations to estimate only satellite clock offsets and tropospheric zenith wet delays, has fewer estimated parameters than other approaches, and thus its implementing procedure is efficient and can be performed and extended easily. To obtain high accuracy, the approach involves three steps. First, the high-accuracy tropospheric zenith wet delay of each station is estimated using mixed-differenced carrier phase observations. Second, satellite clock offset changes between adjacent epochs are estimated using also mixed-differenced carrier phase observations. Third, the satellite clock offsets at the initial epoch are estimated using satellite-differenced pseudorange observations. Finally, the initial epoch clock results and clock offset changes are concatenated to obtain the clock results of the current epoch. To validate the real-time satellite clock results, multi-GNSS post-processing clock products from IGS ACs were selected for comparison. From the comparison, the standard deviations of the GPS, GLONASS, BeiDou and Galileo systems clock results are approximately 0.1–0.4 ns, except for the BeiDou GEO satellites. The root mean squares are about 0.4–2.3 ns, which are similar to those of other international real-time products. When the clock estimates were assessed based on a pseudo-kinematic PPP procedure, the positioning accuracies in the East, North and Up components reach 5.6, 5.5 and 7.6 cm, respectively, which meet the centimeter level and are comparable to the application of other products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号