首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During late summer and early autumn of both 1984 and 1985 we observed and photographed the development of a green algal bloom on intertidal mudflats in eastern Maine. The bloom culminated in the formation of thick (8–10 cm) mats and long (>50 m) erpentine rope-like structures. The algal mat was polytypic but composed primarily ofEnteromorpha intestinalis L. We describe the probable sequence of events which led to the formation of algal ropes. The processes involved appear to parallel the development of ball-like masses in other algae. Algal ropes developed after mat formation, as prevailing winds and tidal currents rolled individual and entwined strands across the mudflat. The great mass of algae eventually became embedded into the sediment surface producing anoxic conditions in the substrate up to several cm deep. The ecological significance and possible negative effects of this altered environment on a commercially important bivalve species are discussed.  相似文献   

2.
Modern back-barrier tidal flats of Galveston Island, Follets Island, and Matagorda Peninsula of the Texas coast are dominated by mud- to fine sand-sized siliciclastic sediments and prolific microbial mats. These microbial mats modify sediment behavior and result in a variety of microbially induced sedimentary structures (MISS). Common structures include: knobby surfaces, reticulated surfaces, gas domes, mat-cracks, sieve-like surfaces, erosional pockets, wrinkles, and mat chips. In general, mat thicknesses increase from ~ 1 mm in the upper supratidal to ~ 3 cm (maximum) in the lower supratidal and then decrease to ~ 2 mm in the lower intertidal areas. This same wedge-shaped pattern is displayed by detailed measurements of mat thicknesses from the rims into the deeper centers of depressions (pools) on the supratidal flats. Measurements of 175 mat-cracks show that height of the curled edges of the mat-crack polygons increases with increase in mat thickness. Similarly, measurements of 150 gas domes reveal that the size of the gas domes also increases with increasing thickness of the associated mats. Because mat thickness varies with elevation on the tidal flat, curl height of the mat-cracks and size of the gas domes are also related to elevation.Six zones were identified based on the occurrence of MISS within the supratidal (zone-I) to upper subtidal (zone-VI) areas. At the highest elevation, knobby surfaces characterize zone-I whereas zone-II is defined by reticulated surfaces. Along with reticulated surfaces, gas domes and mat-cracks characterize zone-III and zone-IV, respectively. Association of sieve-like surfaces with mat-cracks typifies zone-V whereas mat deformation structures and sieve-like surfaces define zone-VI. Boundaries between the MISS-zones in general are parallel and related to tidal zones. The distribution patterns of the MISS-zones are strongly controlled by local topography of the sediment surface because the degree of inundation is the primary controlling factor for the mat growth and resultant MISS. Therefore, distribution of the microbially induced sedimentary structures in siliciclastics, along with the dimension of the mat-cracks and gas domes, can be potentially helpful in interpretation of topography of paleodepositional surfaces.  相似文献   

3.
A study of the dynamics of a marine sandwave   总被引:3,自引:0,他引:3  
The movement of the crest of a sandwave was studied using cross-sectional profiles obtained from lines of sea-bed reference stakes. Measurements were made, over a six month period, before and after flood and ebb tides in relation to both spring and neap tides and surface wave conditions. Additional observations were obtained on a daily basis, over an equinoctial neap to spring to neap tidal period, in conjunction with boundary layer flow measurements. Tracer experiments were conducted to study the dispersion of sediment from the sandwave crest. The results showed that the sandwave was relatively stable at neap tides, whilst at higher tidal ranges, the crest position oscillated with successive flood and ebb tides. Net flank erosion occurred on the less steep, upstream slope during the dominant ebb tide. This, together with increased deposition on the lee slope, caused the crest to advance. It was not possible to extrapolate sandwave migration over long periods as the tidal dynamic trends were interrupted by wind stress and surface wave activity. High particle orbital velocities, generated at the sea-bed by storm waves, caused major reductions in crestal heights. Calculated volumes of sediment eroded and accreted were used, with boundary layer flow measurements, to calculate threshold velocities for the movement of the sediment and sediment transport rates.  相似文献   

4.
During 64 days (in June, July, and August 1967–1969), bottom currents have been measured by self-recordingRichardson current meters in the central Gulf of Manfredonia (Southern Adriatic Sea, Italy). The currents show mean velocities of 2–4 cm/sec and maximum velocities ranging from 10–14 cm/sec at 35–50 cm above the sea floor, and maximum velocities of 22 cm/sec at 250 cm above the sediment surface (see Table 1, Fig. 4). During the four measuring periods, NW- to NE-directed current vectors prevailed (Fig. 3): they can be explained by the assumption of a clockwise (anticyclonic) captive eddy or vortex in the Gulf, moving opposite to the constant, “summer-outgoing” Adriatic Gradient Current (Zore-Armanda 1968), which flows to the SE along the Italian coast (Fig. 1). The current directions are opposite to the prevailing wind directions, blowing during the summer mostly from the NW, N and NE; this might be explained by the activity of a northward compensation undercurrent, induced by those winds and possibly also by southeast-flowing surface (gradient) currents. The clockwise 360° rotation of current directions (velocity: 2–13 cm/sec) during one day (June 24/25, 1968) is explained by the influence of a spring tide with a tidal range of 35 cm (Fig. 6). These bottom currents, measured in summer, are only capable of redepositing the river-supplied, clay- to silt-size sediment material by suspension transport. During winter storms with wave action reaching down to a depth of 10 m (?) and swell from strong SE-winds with a longer fetch, it is supposed that current velocities are 3–5 times higher than in summer and sufficient to transport also fine sand. The characteristic distribution of total heavy minerals and of euhedral pyroxenes (Fig. 7 a, b) within the Gulf of Manfredonia indicates that the sediment supplied by the Apennine rivers (mainly River Ofanto) is being re-distributed to the NW and N by longshore drift and by nearshore currents belonging to a clockwise eddy system. This explanation could be verified by the direct current measurements.  相似文献   

5.
Concentration profiles of O2, NH4 +, NO3 , and PO4 3− were measured at high spatial resolution in a 12-cm thick benthic mat of the filamentous macroalga Chaetomorpha linum. Oxygen and nutrient concentration profiles varied depending on algal activity and water turbulence. High surface irradiance stimulated O2 production in the surface layers and introduced O2 to deeper parts of the mat while the bottom layers of the mat and the underlying sediment were anoxic. Nutrient concentrations were highest in the bottom layers of the mat directly above the sediment nutrient source and decreased towards the surface layers due to algal assimilation and enhanced mixing with the overlying water column. Increased turbulence during windy periods resulted in more homogeneous oxygen and nutrient concentration profiles and shifted the oxic-anoxic interface downward. Denitrification within the mat, as measured by the isotope pairing technique on addition of 15NO3 , was found to take place directly below the oxic-anoxic interface. Denitrification activity was always due to coupled nitrification-denitrification, whereby nitrifiers in the mat utilize NH4 + diffusing from below and O2 diffusing from above. The denitrification rate in the mat ranged from 22 μmol m−2 h−1 to 28 μmol m−2 h−1, approximately equivalent to that measured in the surrounding nonvegetated sediment. Although sediment denitrification is suppressed when the sediment surface is covered by a dense macroalgal mat, the denitrification zone may migrate up into the mat. In eutrophic estuaries with a large area of macroalgal cover, the physical structure and growth stage of algal mats may thus play an important role in the regulation of nitrogen removal by denitrification.  相似文献   

6.
A new occurrence of Recent stromatolites different from those known up to now has been discovered on tidal flats of the Bay of Saint-Jean (near Cape Timiris). Their most remarkable features are predominance of quartz sand instead of carbonate, characteristic surface-contouring by grazing fish, absence of cementation, intensive reworking by crabs, and connection with saline sabkha deposits. Entrapment of sand grains and great resistance of the algal sheaths are most important for stromatolitic growth, although today destruction appears to prevail over accretion. Quartz sand of aeolian dunes and carbonatic pellets of aragonitic ooze feeders are the main constituents of the stromatolitic sediments. According to the tidal range the following zonation of the algal mat exists: (A) knoll and cuspate zone, (B) flat zone, (C) gas-domed zone, and (D) crinkle zone.  相似文献   

7.
利用2002年在崇明东滩采得的CDS、CDM和CDN三个典型区域沉积物剖面样品,测定了其中的有机碳、活性铁、总磷以及粒度等特征参数,分析了地球化学元素的分布变化特征并对其沉积环境的变化进行了探讨。结果表明崇明东滩沉积物中有机碳的含量较大(0.3%~1.07%),垂向分布上,表层/亚表层含量高且变化复杂,中下层有机碳含量逐渐变小。Fe3 在整个研究区域均是从表层向下逐渐递减的,Fe2 含量逐渐增加。从实验结果判断,所研究区域沉积环境上层以氧化环境为主,呈弱氧化型,中下层以还原环境为主。总磷含量呈现自上而下减少的变化,CDS表现为波浪形变化。分析发现潮滩沉积物各地球化学元素之间不仅相互作用,并且受到沉积物颗粒大小和水动力、物源输入、物理扰动等因素的影响。崇明东滩沉积物氧化还原界面与中、高潮滩划分界大致相当。  相似文献   

8.
在长江河口潮滩、分流河道和水下三角洲共获得18个柱样,进行沉积学分析和210Pb测定,并对其中6根柱样进行137Cs测定。经研究发现,长江口外在水深25~30m,122°30′N,31°00′E附近存在一个泥质沉积中心,沉积速率达2.0~6.3cm/yr。另外,在潮滩和涨潮槽也获得较高沉积速率,其中南汇和横沙岛潮滩沉积速率(1.03~1.94cm/yr)高于崇明东滩(0.51~0.76cm/yr),涨潮槽沉积速率也达0.86cm/yr。此外,在石洞口、南汇、九段沙潮滩和三角洲前缘有部分柱样未获沉积速率,推测为沉积环境不稳定或沉积速率过快所致。  相似文献   

9.
长江口沉积物210Pb分布及沉积环境解释   总被引:19,自引:0,他引:19  
在长江河口潮滩、分流河道和水下三角洲共获得18个柱样,进行沉积学分析和210Pb测定,并对其中6根柱样进行137Cs测定。经研究发现,长江口外在水深25~30m,122°30′N,31°00′E附近存在一个泥质沉积中心,沉积速率达2.0~6.3cm/yr。另外,在潮滩和涨潮槽也获得较高沉积速率,其中南汇和横沙岛潮滩沉积速率(1.03~1.94cm/yr)高于崇明东滩(0.51~0.76cm/yr),涨潮槽沉积速率也达0.86cm/yr。此外,在石洞口、南汇、九段沙潮滩和三角洲前缘有部分柱样未获沉积速率,推测为沉积环境不稳定或沉积速率过快所致。  相似文献   

10.
陈志明 《地质科学》1981,(4):337-342
冀西北铁岩的结构和构造类似于碳酸盐岩,因此,借鉴于现代碳酸盐相模式与沉积环境,有可能恢复古代铁岩的沉积环境。本文对铁岩分类及其沉积环境进行了探讨。  相似文献   

11.
渤海湾曹妃甸港区开发对水动力泥沙环境的影响   总被引:4,自引:3,他引:4       下载免费PDF全文
针对渤海湾曹妃甸海域波浪、潮流、泥沙及海床演变特点,应用波流共同作用下二维泥沙数学模型研究港区开发方案。2006年冬季和夏季大、小潮潮流泥沙验证表明,该海域潮位及15条同步垂线流速、流向、含沙量过程的计算值与实测值吻合良好,并进行了矿石码头港池前沿海域在潮流与波浪共同作用下悬沙引起的冲淤验证,计算的冲淤厚度及其分布趋势与实测值比较接近。在此基础上,研究了曹妃甸前岛后陆的港区围垦方案对水动力环境的影响问题,包括该工程引起的曹妃甸甸头以南深槽、老龙沟深槽及各港池的流速变化及底床的冲淤变形等。  相似文献   

12.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

13.
A two-dimensional, vertically integrated, nonlinear numerical model was applied to investigate the tide-driven bed load transport of sediments and morphodynamics in the shallow coastal lagoon of Yavaros, located in the southeastern part of the Gulf of California, Mexico. Satellite imagery exposes strong sediment dynamics in this coastal region. The dynamics in the lagoon were forced by 13 tidal constituents at the open boundary. Tides are of a mixed character and they are predominantly semidiurnal. The calculations showed areas of intense tidal currents and considerable water exchange with the Gulf of California. Numerical experiments revealed an ebb-dominant tidal distortion and a net export of sediment from the lagoon to the Gulf of California. A simulation of 20 years showed that the lagoon exported about 1,600 m3 of sediment; however, the daily oscillating exchange of sediment reached values of around 8 m3. The daily averaged flux of export–import sediments oscillates principally with semiannual, monthly and fortnightly periods. By applying a threshold velocity, a variable friction coefficient and the calculated amplitude of tidal velocities, it was possible to determine that morphological changes occur in zones of sharp topographic gradients and to explain the effect of friction on the export–import process of sediments. A 10-year simulation revealed that accumulation of sediment (~20 cm) occurred in small areas, whereas erosion occurred in larger areas but with less intensity (~8 cm). Besides the importance for the morphodynamics, these kinds of erosion–accretion processes may be relevant for the marine ecology.  相似文献   

14.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

15.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   

16.
刘红  何青  吉晓强  王亚  徐俊杰 《沉积学报》2008,26(5):833-843
通过对崇明东滩两个海滩剖面、表层沉积物和悬沙粒度以及同步水沙资料的分析,探讨波流共同作用下表层沉积物和地貌的分异规律。受波流共同作用的影响,表层沉积物中值粒径由破波带向两侧逐渐变细,分选由破波带向两侧逐渐变差,偏度由极正偏变为正偏,峭度由很窄尖变为宽平和中等峭度。由破波带向岸方向,流速逐渐减小,含沙量逐渐增加。悬沙和表层沉积物粒度特征的对比分析表明,潮间带上部的悬沙主要来源于破波带泥沙的再悬浮。破波带内泥沙以“波浪掀沙”引起的分选运移为主,而破波带两侧的泥沙以潮流对破波带水体的“平流输移”为主。以潮汐水位和高精度海滩剖面数据对崇明东滩微地貌类型按高程进行了新的划分。  相似文献   

17.
Submarine groundwater discharge (SGD) is an important pathway for groundwater and associated chemicals to discharge to the sea. Groundwater levels monitored along a transect perpendicular to the shoreline are used to calculate SGD flux from the nearshore aquifer to Tolo Harbor, Hong Kong (China). The calculated SGD flux—recharge/discharge measured with Darcy’s Law methods—agrees well with estimates based on geo-tracer techniques and seepage meter in Tolo Harbor during previous studies. The estimated freshwater SGD is 1.69–2.0 m2/d at the study site and 0.3?±?0.04 cm/d for the whole of Tolo Harbor, which is comparable to the river discharge (0.25?±?0.07 cm/d) and precipitation (0.45?±?0.15 cm/d). The tide-driven SGD in the intertidal zone is 13.98–17.59 m2/d at the study site and 2.42?±?0.56 cm/d for the whole of Tolo Harbor. The SGD occurring in the subtidal zone and the bottom of Tolo Harbor is 3.12?±?4.63 cm/d. Fresh SGD accounts for ~5% of the total SGD, while the rest (~95%) is contributed by saline SGD driven by various forces. About 96% of the tide-driven SGD in the intertidal zone occurs in the ebbing tide period because the head difference between the groundwater level and sea level is great during this period. Tide-driven SGD in the spring tide is ~1.2 times that during neap tide. The tidal fluctuation amplitude and tide-driven SGD in the intertidal zone are positively correlated to each other; thus, a spring neap variation of the tide-driven SGD is observed.  相似文献   

18.
The relative roles of waves and tidal currents in transporting bottom sediment on the continental shelf off Lands End, southwest England, are evaluated by study of (a) sediment grain size in relation to boundary layer measurements in tidal currents, (b) regional variation in sediment parameters in relation to peak tidal and wave-induced currents, and (c) visual observation of bedforms. (a) The sediments are mainly zoogenic sands. The average hydraulic equivalent median diameter is Mdφ=1.40φ (medium grade sand), and two-thirds of the median grain sizes fall between 0.97φ and 1.83φ. The linear bottom current which will just move this range of sizes is exceeded only slightly by the highest tidal drag velocities ū* measured in the area. Thus, sediment movement by tidal currents alone is restricted to areas of high bed roughness and strong peak tidal flows. In contrast, wave-induced oscillatory currents at 100 m depth (typical of the area) attain sufficient speed to disturb the same particle sizes over 3% of the time. This includes storm periods when much greater velocities occur. (b) The average Mdφ of the sediment decreases southwest and northeast from south of the Lizard. This correlates well with the pattern of maximum tidal current speeds, suggesting that tidal currents control the areal distribution of sediment median grain size. Most sediments are well sorted (mean σi=0.48φ). Sorting improves at shallower depths but does not improve in areas of faster tidal currents, suggesting that wave-induced currents exert the major control on sorting. Silt and clay proportions increase west of the Scilly Isles and are influenced by both wave and tidal currents. (c) Photographs and television pictures show that symmetrical bedforms due to wave action are dominant north and west of the western Channel. Asymmetric bedforms are more common in the western Channel itself, where tidal currents and bed roughness are both high. Results are used to construct a sediment transport model for the study area. Since medium grade well sorted sands occur in depths of over 100 m, many ancient, extensive, well sorted sand sheets may have been deposited at depths greater than previously suspected.  相似文献   

19.
极浅水边界层的沉积环境效应   总被引:1,自引:1,他引:0  
高抒 《沉积学报》2010,28(5):926-932
极浅水环境是水深远小于正常边界层厚度的环境,潮滩滩面和潮水沟就经常处于这种环境之中。来自江苏潮滩的观察资料表明,落潮后期滩面和潮水沟在薄层低速水流作用下可形成浅水波痕、平床和次级潮水沟形态,而边界层内的流速结构仍然得以维持,物质输运强度也与Von Kármán-Prandtl模型所定义的u100数值相一致。涨急时段中潮位附近形成的滩面涌潮是极浅水边界层的另一种动力学行为,它代表薄层高速水流作用下发生的底部边界层系统的崩溃,此时Von Kármán-Prandtl模型所刻画的流速结构不复存在。滩面涌潮高度是系统崩溃的临界水深,它可以定量地表示为Hb=4z0。极浅水边界层过程对潮滩沉积和地貌形成具有独特的作用。  相似文献   

20.
Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号