首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

2.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

3.
Radiative recombination of N and O provides a significant source for auroral emission in the γ and δ bands of NO with selective population of vibrational levels in the A2Σ+ and C2Π states. This mechanism may account for emissions detected near 2150 Å. Models are derived for the auroral ionosphere and include estimates for the concentrations of N and NO. The concentration of NO is estimated to have a value of about 108 cm?1 near 140 km in an IBC III aurora. The corresponding density for N is about 5 × 107cm?3 and the concentration ratio NO+O2+ has a value of about 5.5.  相似文献   

4.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

5.
A review is given of the stratospheric budgets of odd oxygen, odd nitrogen, nitrous oxide, methane and carbonyl sulfide. The stratospheric column production rate of NO by the reaction N2O + O(1D) → 2 NO is 1.1–1.9 × 108 molecules cm?2 s?1. The stratospheric loss rates for N2O, CH4 and COS are equal to 0.9–1.4 × 109, 1 × 1010 and 0.5 × 107 molecules cm?2 s?1, respectively. From currently available information on the global distributions of N2O and CH4 there are some indications of about two times smaller OH concentrations below 35 km than those which are calculated based on the latest compilation of kinetic data.Most significantly, however, it is shown that photochemical models and available ozone observations cannot be reconciled and that there may be particularly severe problems in the 25–35 km region. This issue is thoroughly discussed.Volcanic emissions of SO2 to the stratosphere may locally lead to much enhanced ozone concentrations and heating rates. These may influence the dynamic behaviour of volcanic plumes before their dispersion over large volumes of the stratosphere.  相似文献   

6.
Two extreme ultraviolet (EUV) spectrophotometers flown in December 1978 on Venera 11 and Venera 12 measured the hydrogen Lyman α emission resonantly scattered in the atmosphere of Venus. Measurements were obtained across the dayside of the disk, and in the exosphere up to 50,000 km. They were analyzed with spherically symmetric models for which the radiative transfer equation was solved. The H content of the Venus atmosphere varies from optically thin to moderately thick regions. A shape fit at the bright limb allows one to determine the exospheric temperature Tc and the number density nc independently of the calibration of the instrument or the exact value of the solar flux. The dayside exospheric temperature was measured for the first time in the polar regions, with Tc = 300 ± 25°K for Venera 11 (79°S) and Tc = 275 ± 25°K (59°S) for Venera 12. At the same place, the density is nc = 4?2+3 × 104 atom.cm?3, and the integrated number density Nt from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom.cm?2, a factor of 3 to 6 lower than that predicted in aeronomical models. This probably indicates that the models should be revised in the content of H-bearing molecules and should include the effect of dynamics. Across the disk the value of Nt decreases smoothly with a total variation of two from the morning side to the afternoon side. Alternately it could be a latitude effect, with less hydrogen in the polar regions. The nonthermal component if clearly seen up to 40,000 km of altitude. It is twice as abundant as at the time of Mariner 10 (solar minimum). Its radial distribution above 4000 km can be simulated by an exospheric distribution with T = 1030K and n = 103 atom.cm?3 at the exobase level. However, there are less hot atoms between 2000 and 4000 km than predicted by an ionospheric source. A by-product of the analysis is a determination of a very high solar Lyman α flux of 7.6 × 1011 photons (cm2 sec Å)?1 at line center (1 AU) in December 1978.  相似文献   

7.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

8.
We have studied the possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2CH4H2 Titan model atmosphere. The cosmic-ray-induced ionization results in peak electron densities of 2 × 103 cm?3, with NH4+, C3H9+, and C4H9+ being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.  相似文献   

9.
Intensities of auroral hiss generated by the Cerenkov radiation process by electrons in the lower magnetosphere are calculated with respect to a realistic model of the Earth's magnetosphere. In this calculation, the magnetic field is expressed by the “Mead-Fairfield Model” (1975), and a static model of the iono-magnetospheric plasma distribution is constructed with data accumulated by recent satellites (Alouette-I, -II, ISIS-I, OGO-4, -6 and Explorer 22). The energy range of hiss producing electrons and the frequency range of the calculated VLF are 100–200 keV, and 2–200 kHz, respectively. Intensities with a maximum around 20 kHz, of the order of 10?14 W/m2/Hz1 at the ground seem to be ascribable to the incoherent Cerenkov emission from soft electrons with a differential energy spectrum E?2 having an intensity of the order of 108cm?2/sec/sr/eV at 100 eV. It is shown that the frequency of the maximum hiss spectral density at geomagnetic latitudes 80° on the day-side and 70° on the night-side is around 20 kHz for the soft spectrum (~E?2) electrons, which shifts toward lower frequency (~10 kHz) for a hard spectrum (~E?1·2) electrons. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. The higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and the lesser occurrence of auroral hiss in night-time sectors must be, therefore, due to the local time dependence of the energy spectra of precipiating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.  相似文献   

10.
A model calculation to predict infrared Shuttle flow due to the radiative relaxation of vibration of the NO molecule is presented. Space Shuttles hit atmospheric NO molecules at a very high speed (≈ 8 km s?1) and excite vibrational and rotational motions up to the temperature of 54,000 K. With the electric dipole radiation of Δν = 1, 2, 3, and particularly 4 (ν is the vibrational quantum number), the excited NO molecules emit infrared radiation before they collide with other molecules. The total radiation power is estimated to be 170AμW, where A is the cross-section area of the Shuttle in m2 if no adsorption of the NO molecule takes place on the Shuttle surface. The intensity of each infrared line is calculated as a function of time, including all vibrational states up to ν = 35. For example, the 5039 cm?1 line (ν = 24 → 20) has a maximum intensity of about 2.3 × 10?21 W molecule at around 0.2 ms, which corresponds to 80 cm from the Shuttle surface if the recoil speed of the molecules is 4 km s?1.  相似文献   

11.
Altitude profiles for the number densities of NO, NO2, NO3, N2O5, HNO2, CH3O, CH3O2, H2CO, OH, and HO2 are calculated as a function of time of day with a steady-state photochemical model in which the altitude profiles for the number densities of H2O, CH4, H2, CO, O3, and the sum of NO and NO2 are fixed at values appropriate to a summer latitude of 34°. Average daily profiles are calculated for the long-lived species, HNO3, H2O2, and CH3O2H.The major nitrogen compound HNO3 may have a number density approaching 5 × 1011 molecules cm?3 at the surface, although an effective loss path due to collisions with particulates could greatly reduce this value.The number density of OH remains relatively unchanged in the first 6 km and reaches 1 × 107 molecules cm?3 at noon, while the number density of HO2 decreases throughout the lower troposphere from its noontime value of 8 × 108 molecules cm?3 at the surface.H2O2 and H2CO both have number densities in the ppb range in the lower troposphere.Owing to decreasing temperature and water concentration, the production of radicals and their steady-state number densities decrease with altitude, reaching a noontime minimum of 1 × 108 molecules cm?3 for OH and 3 × 107 molecules cm?3 for HO2 at the tropopause. The related minor species show even sharper decreases with increasing altitude.The primary path for interconverting OH and HO2 serves as the major sink for CO and leads to a tropospheric lifetime for CO of ~0.1 yr.Another reaction cycle, the oxidation of CH4, is quite important in the lower troposphere and leads to the production of H2CO along with the destruction of CH4 for which a tropospheric lifetime of ~2 yr is estimated.The destruction of H2CO that was produced in the CH4 oxidation cycle provides the major source of CO and H2 in the atmosphere.  相似文献   

12.
The data on the coherent cosmic oscillation (with a period of 9600.6 s) and the finely tuned relationships between the constants of the micro- and macroworlds is used to adjust the Newtonian constant: G = 6.67543(2) × 10?8 cm3 g?1 s?2.  相似文献   

13.
V.A. Krasnopolsky 《Icarus》1979,37(1):182-189
Observations and model calculations of water vapor diffusion suggest that about half the amount of water vapor is distributed with constant mixing ratio in the Martian atmosphere, the other half is the excess water vapor in the lower troposphere. During 24 hr the total content of water vapor may vary by a factor of two. The eddy diffusion coefficient providing agreement between calculations and observations is K = (3–10) × 106 cm2 sec?1 in the troposphere. An analytical expression is derived for condensate density in the stratosphere in terms of the temperature profile, the particle radius r, and K. The calculations agree with the Mars 5 measurements for r = 1.5 μm, condensate density 5 × 10?12 g/cm3 in the layer maximum at 30 to 35 km, condensate column density 7 × 10?6 cm?2, K = (1?3) × 106 cm2 sec?1, and the temperature profile T = 185 ? 0.05z ? 0.01z2 at 20 to 40 km. Condensation conditions yield a temperature of 160°K at 60 km in the evening; the scale height for scattered radiation yields T = 110°k at 80 to 90 km. The Mars model atmosphere has been developed up to 125 km.  相似文献   

14.
A study has been undertaken of the vertical fluxes of ionization in the F2 region over Millstone Hill (L = 3.2) utilizing incoherent scatter measurements of electron density, electron and ion temperatures, ion composition and vertical velocity, made over 24-hr periods twice per month during 1969. The paper presents the results for all these parameters on five representative days, and discusses the distribution of the vertical flux observed during the daytime at other times during the year.Near noon the downward flux reached a peak near 300 km with an average value of ~3 × 109 el/cm2/sec in winter and ~1.6 × 109 el/cm2/sec in summer. The difference is thought to be real and be caused by the higher loss rates prevailing in summer. Above 550 km there is usually a transition to upward flux, which appears to be fully established by 700 km and has an average value of the order of 5 × 107 l/cm2/sec. From ion composition measurements, it appears that this flux is carried almost entirely by O+ ions to at least ~900 km, as the H+ ion concentration is small (<2% at ~775 km altitude) in this region by day. While the value of the escape flux appears in fair agreement with theoretical estimates of the limiting flux for this portion of the sunspot cycle, the extremely low H+ concentrations do not appear to be in accord with existing models.The diurnal variation of the upward flux through 650 km exhibits an abrupt onset close to the time of sunrise at the 200 km level (χ = 103°). A reversal to downward flux usually begins before sunset, often in the early afternoon.  相似文献   

15.
We have calculated the energy spectra of cosmic ray secondary antiprotons and positrons using the latest available data on inclusive reactions. Using the measured positron spectrum, we have found that the amount of matter traversed by the cosmic rays in the few GeV region to bem≈4.7±1.5 g cm?2 of interstellar hydrogen. The computed antiproton to proton ratio is about 4×10?4 for energies 5–10 GeV. This is sufficient to make observations of antiprotons feasible from balloon flights. We have also pointed out the type of information that can be obtained if accurate information of the spectra of these two components becomes available.  相似文献   

16.
Simultaneous measurements of NO and NO2 in the stratosphere leading to an NOx determination have been performed by means of i.r. absorption spectrometry using the Sun as a source in the 5·2 μm band of NO and in the 6·2 μm band of NO2. The observed abundance of NOP peaks at 26 km where it is equal to (4·2 ± 1) × 109 cm?3. The volume mixing ratio of NOp was observed to vary from 1·3 × 10?9 at 20 km to 1·3 × 10?8 at 34 km.  相似文献   

17.
Quasars, pulsars and other cosmic sources of intense radiation are known to have large brightness temperature (kT b?mc 2) and relativistic electron density values. In this case the induced Compton scattering by relativistic electrons should be considered. The probability of scattering with decreasing radiation frequency is derived for isotropic radiation scattering. When induced scattering takes place, the relativistic electron obtains its energy by transforming high-frequency quanta into the low-frequency ones. In the most intensive sources electrons would receive energiesE?mc 2 ××(kT b/mc 2)1/7 due to the heating rate proportional toE ?5 with the cooling rate proportional toE 2. Considerable distortion of the quasar spectrum is possible for reasonably large values of relativistic electron density (N?106cm?3) notwithstanding that the heating is negligible. In pulsars relativistic electron heating and spectrum distortion appear to depend more on the induced Compton scattering.  相似文献   

18.
Further reduction of Doppler tracking data from Mariner 9 confirms our earlier conclusion that the gravity field of Mars is considerably rougher than the fields of either the Earth or the Moon. The largest positive gravity anomaly uncovered is in the Tharsis region which is also topographically high and geologically unusual. The best determined coefficients of the harmonic expansion of the gravitational potential are: J2 = (1.96 ± 10.01) × 10?3 ; C22 = ?(5.1 ± 0.2) × 10?5; and S22 = (3.4 ± 0.2) × 10?5. The other coefficients have not been well determined on an individual basis, but the ensemble yields a useful model for the gravity field for all longitudes in the vicinity of 23° South latitude which corresponds to the periapse position for the orbiter.The value obtained for the inverse mass of Mars (3 098 720 ± 70 M?1) is in good agreement with prior determinations from Mariner flyby trajectories. The direction found for the rotational pole of Mars, referred to the mean equinox and equator of 1950.0, is characterized by α = 317°.3 ± 0°.2, δ = 52°.7 ± 0°.2. This result is in excellent agreement with Sinclair's recent value, determined from earth-based observations of Mars' satellites, but differs by about 0°.5 from the previously accepted value. Other important physical constants that have either been refined or confirmed by the Mariner 9 data include: (i) the dynamical flattening, f = (5.24 ± 0.02) × 10?3; (ii) the maximum principal moment of inertia, C = (0.375 ± 0.006) MR2; and (iii) the period of precession of Mars' pole, P ? (1.73 ± 0.03) × 105 yr, corresponding to a rate of 7.4 sec of arc per yr.  相似文献   

19.
The nitric oxide density profile between the altitudes 72 and 120 km was obtained by means of the airglow γ(1, 0) band measured with a rocket-borne radiometer flown at Syowa Station (69°S, 40°E). The NO density was found to have two peaks with a value of 1.5× 108cm?3 at 90 and 110 km, and is much larger than those in the middle and low latitudes. Because of a long lifetime of NO in the mesosphere, the observed NO enhancement may be due to the after-effect of the particle precipitation event which occurred within the half day before, despite no polar disturbance during the rocket flight.  相似文献   

20.
The published data on the temperature dependence of the radiative combination of atomic oxygen with nitric oxide at pressures near 1 torr is examined. Arguments are advanced to suggest that radiation near the cut-off wavelength (~ 3875Å) is coming from the unstabilized activated complex, No12. At 4000Å a positive activation energy of 1 kcal mole?1 is deduced. Application of this temperature dependence with the rate coefficient at 5200Å is made to airglow measurements in aurora. The deduced NO concentration is about 109 cm?3, in general agreement with that deduced from the measured NO+/O+2 ratio as well as an auroral model prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号