首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A pollen analytical investigation of the sediments of Berry Pond, Berkshire County, Massachusetts, has demonstrated a sequence of pollen assemblage zones similar to those detected elsewhere in New England. From about 13,000 to 12,000 yr B.P. the vegetation of the region was treeless, probably tundra. By 11,500 yr tundra had been replaced by open boreal forest. Closed boreal forest became dominant by 10,500 yr. Boreal forests were replaced by mixed coniferous and deciduous forests with much white pine about 9600 yr ago. A “northern hardwoods” complex with much hemlock, beech, and sugar maple succeeded the mixed forests 8600 yr ago. Hemlock declined very rapidly approximately 4800 yr ago and was replaced by birch, oak, beech, ash, and red maple. This decline may have been biologically rather than climatically induced. There is a slight maximum of pine (much of it pitch pine) from 4100 to 2600 yr ago, perhaps indicative of warmer and/or drier conditions. There were slight changes in the forests about 1600 yr ago as chestnut immigrated and spruce and larch increased slightly. European land clearance and subsequent land abandonment are detectable in the uppermost levels.  相似文献   

2.
At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.  相似文献   

3.
By mapping the data from 62 radiocarbon-dated pollen diagrams, this paper illustrates the Holocene history of four major vegetational regions in northeastern North America. Isopoll maps, difference maps, and isochrone maps are used in order to examine the changing patterns within the data set and to study broad-scale and long-term vegetational dynamics. Isopoll maps show the distributions of spruce (Picea), pine (Pinus), oak (Quercus), herb (nonarboreal pollen groups excluding Cyperaceae), and birch + maple + beech + hemlock (Betula, Acer, Fagus, Tsuga) pollen at specified times from 11,000 BP to present. Difference maps were constructed by subtracting successive isopoll maps and illustrate the changing patterns of pollen abundances from one time to the next. The isochrone maps portray the movement of ecotones and range limits by showing their positions at a sequence of times during the Holocene. After 11,000 BP, the broad region over which spruce pollen had dominated progressively shrank as the boreal forest zone was compressed between the retreating ice margin and the rapidly westward and northward expanding region where pine was the predominant pollen type. Simultaneously, the oak-pollen-dominated deciduous forest moved up from the south and the prairie expanded eastward. By 7000 BP, the prairie had attained its maximum eastward extent with the period of its most rapid expansion evident between 10,000 and 9000 BP. Many of the trends of the early Holocene were reversed after 7000 BP with the prairie retreating westward and the boreal and other zones edging southward. In the last 500 years, man's impact on the vegetation is clearly visible, especially in the greatly expanded region dominated by herb pollen. The large scale changes before 7000 BP probably reflect shifts in the macroclimatic patterns that were themselves being modified by the retreat and disintegration of the Laurentide ice sheet. Subsequent changes in the pollen and vegetation were less dramatic than those of the early Holocene.  相似文献   

4.
5.
Pollen and plant macrofossils preserved in lake sediment from Lake West Okoboji, Dickinson County, Iowa, indicate how the vegetation of that area changed during the late glacial and postglacial. A closed coniferous forest, dominated by spruce and larch trees, produced the Picea-Larix pollen assemblage zone. Fir trees were a minor constituent of this forest; pine trees were probably absent. Black ash trees increased in abundance at Lake West Okoboji and by 13,500 yr ago were an important constituent of the forest. The sediment accumulation rate and the pollen influx were low throughout this time. Birch and alder pollen peaked in abundance approximately 11,800 yr ago. Pollen influx increased rapidly as birch and alder replaced coniferous trees on the uplands. A deciduous forest, containing abundant oak and elm trees, replaced the birch-alder-coniferous forest. This forest inhabited northwestern Iowa from approximately 11,000 to 9000 yr B.P. Nonarboreal species became prevalent between approximately 9000 and 7700 yr B.P. as prairie began to replace deciduous forest on the uplands. Charred remains of Amorpha canescens and other upland species attest to the presence of prairie fires as an aid in establishing prairie and destroying the forest. The pollen influx declined. The warmest, driest part of the postglacial occurred in northwestern Iowa from approximately 7700 to 3200 yr ago. Lake level fell 9 to 10 m, and prairie extended to the edge of the lake. Wet-ground weeds inhabited areas near lake level which were alternately flooded, then dry. Pollen influx was approximately 100 grains/cm2/yr during the driest time in this dry interval.Deciduous trees, particularly oaks, returned after approximately 3200 yr B.P. Prairie continued to occupy the uplands but trees were more common in the lowlying wet areas. Settlement by Europeans in northwestern Iowa about 1865 is marked by an increase in weed pollen. Macrofossil deposition changed in 1910 in response to the stabilization of lake level.  相似文献   

6.
A 14-m-thick section of marine and nonmarine sediments of the Gubik Formation of northern Alaska, exposed in bluffs near Ocean Point on the Colville River, has been studied by means of pollen analysis. Pollen from the marine sediments, of probable late Pliocene age, records a boreal forest of spruce and birch with minor amounts of alder in the adjacent terrestrial vegetation. Pine and perhaps true fir were probably at or near their northern limit here, but hemlocks and hardwoods were absent. The suggested environment for the Arctic Slope during the time represented by the marine sediments is similar to that of present-day Anchorage. Pollen floras from the overlying fluvial strata, of early or middle Pleistocene age, record predominantly herbaceous taxa indicating tundra conditions probably more severe than those of the present day. These deposits were most likely contemporaneous with glacial conditions in the Brooks Range to the south. Pollen of woody taxa (spruce, alder, birch, heaths) is rare through most of the section, although birch and alder percentages similar to those found in modern river sediments indicate an interstadial or interglacial warming in midsection. Inland climates during glacial episodes may have been similar to those of the present Arctic coast.  相似文献   

7.
The various lobes and segments of the southern periphery of the Laurentide ice sheet reached their maximum extension at different times between 21,000 and 14,000 yr ago, but the CLIMAP date of 18,000 yr ago is taken as a reference level to review the distribution of major vegetational formations in central and eastern United States. Tundra was apparently confined to a narrow belt peripheral to the ice margin only in the Minnesota area and from northern Pennsylvania to New England, with extensions down the crest of the Appalachian Highlands at least as far as Maryland. Some areas south of the Great Lakes may later have been marked by treeless vegetation briefly as the ice retreated. The boreal forest to the south in the central United States was dominated by spruce; the jack pine that had prevailed during previous times was apparently eliminated by the time the ice reached its maximum. In the Appalachian Highlands and the Atlantic Coastal Plain, however, jack pine occurred along with spruce, which decreased in importance southward. The southern limit of the boreal forest in the Southeast was perhaps somewhere in southern Georgia and Alabama. Oak and other temperate deciduous trees were minor components of the boreal coniferous forests especially in the southern Appalacchians, but there is no evidence yet in the southeastern states for a relic mixed mesophytic forest 18,000 yr ago similar to the rich modern deciduous forests of the region, except possibly in the Lower Mississippi Valley. The climate in much of the Southeast was apparently dry as well as cool at that time; in Florida oak/pine scrub and prairie-like openings prevailed, and all but the deepest lakes dried up.  相似文献   

8.
Nonconnah Creek, located in the loess-mantled Blufflands along the eastern wall of the Lower Mississippi Alluvial Valley in Tennessee displays a sedimentary sequence representing the Altonian Substage through the Woodfordian Substage of the Wisconsinan Stage. The site has a biostratigraphic record for the Altonian and Farmdalian Substages that documents warm-temperate upland oak-pine forest, prairie, and bottomland forest. At 23,000 yr B.P., white spruce and larch migrated into the Nonconnah Creek watershed and along braided-stream surfaces in the Mississippi Valley as far as southeastern Louisiana. The pollen and plant-macrofossil record from Nonconnah Creek provides the first documentation of a full-glacial locality in eastern North America for beech, yellow poplar, oak, history, black walnut, and other mesic deciduous forest taxa. During the full and late glacial, the Mississippi Valley was a barrier to the migration of pine species, while the adjacent Blufflands provided a refuge for mesic deciduous forest taxa. Regional climatic amelioration, beginning about 16,500 yr B.P., is reflected by increases in pollen percentages of cooltemperate deciduous trees at Nonconnah Creek. The demise of spruce and jack pine occurred 12,500 yr B.P. between 34° and 37° N in eastern North America in response to postglacial warming.  相似文献   

9.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.  相似文献   

10.
A peat layer beneath two till beds was found at Seitevare in Swedish Lapland. The pollen flora layer indicates deposition during the later part of the Eemian Interglacial. The vegetation consisted of open forests predominated by pine and birch, mixed with alder and spruce. The sedimentation took place in a small oligotrophic-dystrophic water basin with a pH about 5, according to the diatom flora. In an adjacent section, silty sediments with pollen indicating interstadial vegetation (birches, herbs) are covered by one till bed. These sediments are tentatively correlated with the Peräpohjola Interstadial in northern Finland and north-eastern Sweden. The lithostratigraphy indicates one pre-Eemian and probably three Weichselian glacial advances.  相似文献   

11.
The data obtained from investigation of the Middle and Late Neopleistocene lake sediments in the European Subarctic Region of Russia are reported. Chirva, Rodionovo (Scklov), Sula (Mikulino), and Byzovaya (Leningrad) sediments were subject to palynological analysis and investigation of particle size distribution and mineral composition. The spore–pollen spectra of the Chirva sediments demonstrate two climatic optima: the lower optimum is dominated by the pollen of Pinus sylvestris and broad-leaved species (up to 10%); the upper optimum is dominated by Picea sp. and Pinus sylvestris, while the pollen of Picea sect. Omorica and broad-leaved species are sporadic. The Rodionovo flora is characterized by a more xerophilous composition relative to the Chirva flora and a higher pollen content of pine, birch, wormseed plants, and wormwood. The climatic optimum of the Sula interglacial is distinguished by boreal vegetation, including spruce, birch, and birch–spruce forests with sparse broad-leaved species. The Byzovaya interstadial is marked by seven stages of changes in the vegetation: from tundra and forest-tundra communities to taiga forests with some broad-leaved species. The natural climatic sedimentation conditions in the Middle and Late Neopleistocene interglacial periods are reconstructed. The mineral composition of sediments was largely formed owing to underlying deposits.  相似文献   

12.
Pollen productivity is one of the most critical parameters for pollen–vegetation relationships, and thus for vegetation reconstruction, in either pollen percentages or pollen accumulation rates. We obtain absolute pollen productivity of three major tree types in northern Finland: pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens ssp. pubescens and B. pubescens ssp. czerepanovii treated as one taxon). Long‐term monitoring records of pollen traps from 15 sites (duration: 5–23 years) and tree volume estimates within a 14 km radius of each trap were compared to estimate pollen productivity (grains m?3 a?1) of these trees using a regression method. The slope of the linear relationship between pollen loading and distance‐weighted plant abundance represents pollen productivity. Estimated productivities of pollen (×108 grains m?3 a?1) for pine, spruce and birch are 128.7 (SE 31.5), 341.9 (SE 81.3) and 411.4 (SE 307.7), respectively. The birch estimate (P > 0.05) is not as good as the others and should be used with caution. Pollen productivities of pine, spruce and birch in northern Finland are, in general, comparable to those of congeneric species in other regions of Europe and Japan. Although the year‐to‐year variations are significant, our volume‐based estimates of pollen productivity for pine and spruce will be essential for quantitative reconstruction of vegetation in the region. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Pollen influx and percentage diagrams were prepared from an 11.4 m core from Moulton Pond, Maine. The pond basin was deglaciated about 14,000 y. a., after which it was located on an island in a sea of subarctic character until about 12,400 y. a. when the surrounding area emerged from the sea. The terrestrial vegetation was tundra until about 10,000 y. a. A change in the tundra vegetation is synchronous with the emergence from the sea, but synchroneity with the Pineo Ridge glacial readvance, which reached its maximum 50 km to the east of the pond about 12,700 y. a., is also possible because of imprecision in the dating. Comparisons of the Moulton Pond results with late-glacial pollen sequences elsewhere in eastern United States and adjacent Canada reveal a lack of synchroneity in vegetational changes casting doubt on claims of major broad-scale climatic shifts over the entire area.The tundra period at Moulton Pond ended with a transition of a few hundred years to partly open, relatively xeric forests of low diversity dominated by white pine, oak, and birch trees. There was no intervening boreal forest. In the postglacial period the vegetation was continually changing, including in the early portion a series of immigrations of temperate tree taxa which later became important in the forests. The transient nature of these assemblages is further indicated by their differences from the closest modern analogs. From about 7100 y. a. until settlement by Europeans 200 y. a., the forests were closed. A major decline of conifers centering about 4700 y. a. was followed by maxima of mesic hardwoods about a thousand years later. In the most recent 2000 yr, the pollen record suggests greater environmental severity, evidenced by increasing spruce. But for the entire postglacial period, the closest modern vegetational analogs are all in the conifer-hardwood region. Much of the postglacial pollen sequence is inexplicable in climatic terms, as evidenced by nonsynchronous behavior of hemlock and beech.The pollen influx diagram is useful for distinguishing tundra from forest, but for the postglacial period it is difficult to interpret. Pollen influx data are strongly affected by shifts in the pattern of sedimentation in lakes. We propose that such shifts account for the major changes in influx in mid- and late-postglacial time at Moulton Pond and at Rogers Lake, Connecticut. This complicates the interpretation of influx data which otherwise are superior to percentage data.  相似文献   

14.
For more than a century it has been postulated that the Holocene vegetation of western Europe has changed in significant ways. A half-century ago a lively debate revolved on whether there were one or two dry intervals causing bogs to dry out and become forested, or whether instead the climate warmed to a maximum and then cooled. Today none of these climatic schemes is accepted without reservation, because two nonclimatic factors are recognized as significant: the differential immigration rates of dominant tree types (e.g., spruce in the north and beech in the south) brought unexpected changes in forest composition, and Neolithic man cleared the forest for agriculture and thereby disrupted the natural plant associations.In North America some of the same problems exist. In the hardwood forests of the Northeast, which are richer than but otherwise not unlike those of western Europe, the successive spread of white pine, hemlock, beech, hickory, and chestnut into oakdominated forests provides a pollen sequence that may yield no climatic message. On the other hand, on the ecotone between these hardwood forests and the conifer forests of the Great Lakes-St. Lawrence area, the southward expansion of spruce, fir, and tamarack in the late Holocene implies a climatic cooling of regional importance, although the progressive conversion of lakes to wetlands favored the expansion of wetland forms of these genera.In the southeastern states the late-Holocene expansion of southern pines has uncertain climatic significance. About all that can be said about the distribution and ecology of the 10 or so species is that some of them favor sandy soils and are adapted to frequent fires. In coastal areas the expansion of pines was accompanied by development of great swamps like Okefenokee and the Everglades—perhaps related to the stabilization of the water table after the early Holocene rise of sea level. The vegetation replaced by the pines in Florida consisted of oak scrub with prairie-like openings, indicating dry early Holocene conditions, which in fact had also prevailed during the time of Wisconsin glaciation.In the Midwest the vegetation history provides a clearer record of Holocene climatic change, at least along the prairie border in Minnesota. With the withdrawal of the boreal spruce forest soon after ice retreat, pine forest and hardwood forest succeeded rapidly, as in the eastern states. But prairie was not far behind. By 7000 years ago the prairie had advanced into east-central Minnesota, 75 miles east of its present limit. It then withdrew to the west, as hardwoods expanded again, followed by conifers from the north. The sequence easily fits the paleoclimatic concept of gradual warming and drying to a maximum, followed by cooling to the present day. It is supported by independent fossil evidence from lake sediments, showing that lakes were shallow or even intermittently dry during mid-Holocene time.Here we have a paleoclimatic pattern that is consistent with the record from glaciers in the western mountains—a record that involves a late-Holocene Neoglaciation after a mid-Holocene interval of distant glacial recession. Just as the Neoglaciation is time-transgressive, according to the review of its evidence by Porter and Denton, so also is the mid-Holocene episode of maximum warmth, and they are thus both geologicclimate units. The warm episode is commonly termed the Hypsithermal, which, however, was defined by Deevey and Flint as a time-stratigraphic unit that is supposed to have time-parallel rather than time-transgressive boundaries. It was defined on the basis of pollen-zone boundaries in western Europe and the northeastern United States that have a sound biogeographic but questionable paleoclimatic basis. Perhaps it should be redefined as Porter and Denton suggest, as a geologic-climate unit with recognizable time-transgressive boundaries that match the gradual geographic shifts in the general circulation of the atmosphere and the resulting location of storm tracks and weather patterns. Holocene glacial and vegetational progressions provide a good record of climatic change, if one can work out the lag effects related to the glacial economy and the geographic factors controlling tree migration. The terminology for the Holocene, where so much time control is available, should indicate the dynamic character not only of the climate but also of the geologic and biogeographic processes controlled by climate.  相似文献   

15.
Batina, M. C. & Reese, C. A. 2010: A Holocene pollen record recovered from a guano deposit: Round Spring Cavern, Missouri, USA. Boreas, 10.1111/j.1502‐3885.2010.00186.x. ISSN 0300‐9483. Bat guano deposits have been the subject of relatively few palynological studies. The studies to date have focused on the most modern samples only, and therefore the full potential of bat guano as an archive for fossil pollen analysis remains unknown. In this paper we report the results of pollen analysis on an 88‐cm vertical profile of fossil bat guano from Round Spring Cavern, Missouri. Four AMS radiocarbon dates were in sequence and showed that the guano pile was active between 8155 and approximately 550 cal. yr BP. Pollen is well preserved throughout the profile, with most samples containing less than 10% indeterminable pollen. Wind‐pollinated taxa are better represented than insect‐pollinated taxa, and pollen concentrations range from 842 to 371 660 grains cm?3. As expected, the dominant vegetation types represented by the pollen assemblage are oak and pine, in accordance with the region's oak–hickory–pine forest. However, there are discrepancies between the guano pollen record and the results of a lake pollen study conducted in southern Missouri. We propose several possible factors that may be influencing the guano pollen record and provide direction for further investigation into the palaeoecological potential of bat guano.  相似文献   

16.
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500-11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions.  相似文献   

17.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
第四纪冰期与间冰期旋回的形成过程,及其陆生植被系统的响应及演化过程是研究地质时期全球变化的重点问题,本文通过对华北地区北部LN1钻孔的121个高质量孢粉数据重建了过去3 Ma以来的区域植被演化过程。研究结果显示,区域植被经历了4个主要发展过程,约3~2 Ma气候相对温暖湿润,主要为以松、桦、栎、胡桃、榆等组成的落叶阔叶林;约2 Ma,区域植被急剧变化,主要表现为针叶林扩张,阔叶林比例的减少,在2~1. 2 Ma转变为以松、云杉、桦为主的针阔叶混交林。在中更新世全球气候转型期,区域植被再次发生迅速改变,在约1. 2~0. 7 Ma转变为稀树的灌丛草原,0. 7 Ma以后区域气候进一步干旱化,在最近0. 7 Ma内区域环境转变为典型草原为主的植被景观。区域的植被变化反映了华北平原区近3 Ma以来整体上呈现出干旱化与寒冷化的趋势,其中2. 0 Ma,1. 2 Ma, 0. 7 Ma气候事件最为突出。上述结果反映了华北地区植被的演变过程及季风降水的逐渐减少与北极冰盖在近3 Ma以来的迅速扩张期同步对应。  相似文献   

19.
Absolute (APF) and relative surface pollen spectra from 67 moderate-sized lakes in Finland and Finnmark are presented as pollen diagrams and isopoll maps and analysed by multidimensional scaling. The results are applicable to problems of regional vegetational history through comparisons of pollen spectra and the use of R-values. It is shown that relative spectra can discriminate the major vegetational regions. APFs give better resolution among northern forest regions and low APFs characterize tundra. Gradients of tree-pollen percentages in south and central Finland are related quantitatively to the major forest gradients, which are azonal, mainly related to soils, and affected but not obscured by human influence. Forest clearance is reflected in frequencies of various non-tree pollen types. Non-tree pollen and spores also provide vegetational and climatic information in the far north.  相似文献   

20.
Palynological studies undertaken in the mountainous regions of the northwest of the Iberian Peninsula are few in number and have been concerned largely with the second half of the Holocene. New pollen data from two Galician sierras, the Courel and Queixa Sierras, provide a 10000‐yr record of vegetation and climate change. In the Courel Sierra before 9750 yr BP, Laguna Lucenza (1420 m a.s.l.) reflects a period of open landscape covered by Poaceae and heliophilous plants, which may be correlated with the Younger Dryas. The onset of the Holocene is characterised by the expansion of oak woodland, prior to 9300 yr BP, following a short phase of birch along with the gradual decline of pine. The oak values reach a peak at 8350 ± 80 yr BP. Towards 8800 yr BP Corylus begins to expand, followed by Alnus (7500 yr BP) and Ulmus. During this period, the Fraga pollen assemblage (Queixa Sierra, 1360 m a.s.l.) indicates Betula woodland surrounding the site, masking the regional predominance of oak. After 5000 yr BP there is a gradual decrease in arboreal pollen values in both Sierras. Castanea appears in Laguna Lucenza (Courel Sierra) at 4075 ± 75 yr BP. There is widespread deforestation during the last 4000 yr. During this period the presence of large quantities of microcharcoal particles points to the occurrence of fire. The reduction in forest is associated with the arrival of cultivation at 4000 yr BP at low altitudes in the Queixa Sierra. At higher altitudes the first agricultural activity is dated at later than 2000 yr BP. This coincides with the first record of cereal cultivation at high altitude in the Courel Sierra. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号