首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Crop monitoring using remotely sensed image data provides valuable input for a large variety of applications in environmental and agricultural research. However, method development for discrimination between spectrally highly similar crop species remains a challenge in remote sensing. Calculation of vegetation indices is a frequently applied option to amplify the most distinctive parts of a spectrum. Since no vegetation index exist, that is universally best-performing, a method is presented that finds an index that is optimized for the classification of a specific satellite data set to separate two cereal crop types. The η2 (eta-squared) measure of association – presented as novel spectral separability indicator – was used for the evaluation of the numerous tested indices. The approach is first applied on a RapidEye satellite image for the separation of winter wheat and winter barley in a Central German test site. The determined optimized index allows a more accurate classification (97%) than several well-established vegetation indices like NDVI and EVI (<87%). Furthermore, the approach was applied on a RapidEye multi-spectral image time series covering the years 2010–2014. The optimized index for the spectral separation of winter barley and winter wheat for each acquisition date was calculated and its ability to distinct the two classes was assessed. The results indicate that the calculated optimized indices perform better than the standard indices for most seasonal parts of the time series. The red edge spectral region proved to be of high significance for crop classification. Additionally, a time frame of best spectral separability of wheat and barley could be detected in early to mid-summer.  相似文献   

2.
Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research.  相似文献   

3.
Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction.  相似文献   

4.
Both of crop growth simulation models and remote sensing method have a high potential in crop growth monitoring and yield prediction. However, crop models have limitations in regional application and remote sensing in describing the growth process. Therefore, many researchers try to combine those two approaches for estimating the regional crop yields. In this paper, the WOFOST model was adjusted and regionalized for winter wheat in North China and coupled through the LAI to the SAIL–PROSPECT model in order to simulate soil adjusted vegetation index (SAVI). Using the optimization software (FSEOPT), the crop model was then re-initialized by minimizing the differences between simulated and synthesized SAVI from remote sensing data to monitor winter wheat growth at the potential production level. Initial conditions, which strongly impact phenological development and growth, and which are hardly known at the regional scale (such as emergence date or biomass at turn-green stage), were chosen to be re-initialized. It was shown that re-initializing emergence date by using remote sensing data brought simulated anthesis and maturity date closer to measured values than without remote sensing data. Also the re-initialization of regional biomass weight at turn-green stage led that the spatial distribution of simulated weight of storage organ was more consistent to official yields. This approach has some potential to aid in scaling local simulation of crop phenological development and growth to the regional scale but requires further validation.  相似文献   

5.
Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification.  相似文献   

6.
星载微波SSM/Ⅰ遥感在中国东北华北农田的辐射特征分析   总被引:2,自引:1,他引:1  
金亚秋 《遥感学报》1998,2(1):19-25
本文研究了星载微波SSM/Ⅰ1996年在中国东北华北平原农田上7个通道辐射亮度温度(TB)的遥感数据,提出用几个通道TB组合的散射指数和极化指数来分析中国平原地区农田的微波辐射特征,及其随生长季节的时间性变化。星载SSM/Ⅰ数据可以监视农作物的生长和平原地区地面湿度的变化。本文还给出了大气和农作物地表矢量辐射传输的数值模拟结果。  相似文献   

7.
金亚秋 《遥感学报》1998,2(1):19-25
国家遥感应用工程技术研究中心NationalEngineeringResearchCenterforGeomatics(NCG)国家遥感应用工程技术研究中心于1996年12月25日由国家科委正式批准组建(国科发计字[1996]603号文件)。中国科学...  相似文献   

8.
Agricultural drought has been a recurrent phenomenon in many parts of India. Remote sensing plays a vital role in real time monitoring of the agricultural drought conditions over large area, there by effectively supplementing the ground mechanism. Conventional drought monitoring is based on subjective data. The satellite based monitoring such as National Agricultural Drought Assessment and Monitoring System (NADAMS) is based on the crop condition, which is an integrated effect of soil, effective rainfall, weather, etc. Drought causes changes in the external appearance of vegetation, which can clearly be identified (by their changed spectral response) and judged using satellite sensors through the use of vegetation indices. These indices are functions of rate of growth of the plants and are sensitive to the changes of moisture stress in vegetation. The satellite based drought assessment methodology was developed based on relationship obtained between previous year’s Normalised Difference Vegetation Index (NDVI) profiles with corresponding agricultural performance available at district/block level. Palar basin, one of the major river basins in Tamil Nadu state was selected as the study area. The basin covers 3 districts, which contain 44 blocks. Wide Image Field Sensor (WiFS) of 188m spatial resolution from Indian Remote Sensing Satellite (IRS) data was used for the analysis. Satellite based vegetation index NDVI, was generated for Samba and Navarai seasons in the years 1998 and 1999. An attempt has been made to estimate the area under paddy. It was also observed that, there was reduction in the crop area as well as vigour in the vegetation in both Samba and Navarai seasons in 1999 when compared with 1998. Drought severity maps were prepared in GIS environment giving blockwise agricultural water deficiency status.  相似文献   

9.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

10.
针对不同的地物覆盖类型,分析和评价了适用于SPOT-7卫星数据的大气校正方法,为其遥感定量研究和应用提供思路和参考。在河南省嵩山地区进行了同步观测实验,获取了SPOT-7卫星影像并进行大气校正处理,地面同步测量了大气光学特性和典型地物样区光谱,计算了地物样区在影像上的反射率和植被指数,分析了不同地物覆盖类型下大气校正模型(fast line-of-sight atmospheric analysis of spectral hypercubes,FLAASH)和大气模型(second simulation of the satellite signal in the solar spectrum,6S)的大气校正效果。对自然植被、农作物中的高秆作物、硬地建议采用FLAASH进行大气校正,对农作物中的低矮作物,建议采用6S进行大气校正。  相似文献   

11.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   

12.
张瑞  刘国祥  于冰  贾洪果 《测绘科学》2012,(4):13-16,21
本文针对2010年4月14日玉树地震引起的地表形变,使用日本ALOS卫星PALSAR L波段雷达影像数据,应用两轨雷达差分干涉(DInSAR)处理得到了以玉树为中心11 000km2范围内的同震形变场,空间分辨率为8m,并在此基础上对玉树地震的震源机制和发震机理进行了分析。研究结果表明L波段雷达数据适合在地形起伏较大的地区进行DInSAR形变探测。该同震形变场信息可为玉树地震的同震形变反演提供参考数据。该研究进一步证实DInSAR技术在大规模地表形变探测和地学研究领域具有广阔的应用前景。  相似文献   

13.
The present work was aimed to compare the abilities of radar and optical satellite data to estimate crop canopy cover, which is a key component of productivity estimates. Three ERS-1 SAR images were obtained of East Anglia (UK) in 1995 and one ERS-2 SAR image in 1996. The images covered a study area around the IACR Brooms Barn Sugar Beet Research Institute. Field data comprising radiometric and biophysical measurements of the crop canopy were collected in two fields from June 22 to August 3, 1995 to coincide with ERS-1 SAR overpass dates. In 1996, field data were collected in two fields from June 11 to July 29 on a weekly basis. A previously calibrated version of the water cloud model was inverted to estimate Leaf Area Index (LAI) from ERS-1 and ERS-2 SAR backscatter and soil moisture samples. Canopy cover was estimated from the radar-estimated LAI using a standard exponential relationship that has a well-established coefficient for sugar beet. Radio-metrically and atmospherically corrected data from three SPOT images in 1995 and one SPOT image in 1996 were used to calculate the Optimised Soil Adjusted Vegetation Index (OSAVI), from which crop canopy cover was estimated using a relationship determined previously by canopy modelling. The crop cover values estimated by satellite were in good agreement with those measured on ground with the Parkinson radiometer. Radar data may be able to provide useful estimates of canopy cover for crop production modelling, especially in the case of loss of optical data due to cloud.  相似文献   

14.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

15.
Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and early warning of food insecurity during drought years for these identified zones.  相似文献   

16.
Subsequent to the launch of the state-of-art third generation Indian Remote Sensing satellite, Resourcesat-1, studies have been conducted to understand the capabilities of the on-board sensors for crop discrimination. The paper discusses the unique capabilities of the AWiFS, LISS-III and LISS-IV sensors in terms of their dimensionality, radiometry and spatial resolutions for crop discrimination and monitoring. The studies have indicated better crop discriminability especially using the short wave infrared data in 1.55–1.70 μm data among the spectrally confusing land cover classes, attributed to the relative differences of water contents. 10-bit radiometry of AWiFS data in four bands has been observed to be a better discriminant. Intrafield variability was very well captured by the LISS-IV data revealing the potential of data for applications like precision farming. The studies have revealed that potential of Resourcesat-1 data becoming the workhorse for several agricultural applications.  相似文献   

17.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.  相似文献   

18.
This research aimed to analyze the possibility to estimate and automatically map large areas of soybean cultivation through the use of MODIS (Moderate-Resolution Imaging Spectroradiometer) images. Two major techniques were used: GEOgraphic-Object-Based Image Analysis (GEOBIA) and Data Mining (DM). In order to obtain the images, the segmentation algorithm implemented by Definiens Developer was used. A decision tree (DT) was created from a training set previously prepared. Time-series of images from the MODIS sensor aboard the Terra satellite were acquired in order to represent the wide variation of the vegetation pattern along the soybean crop cycle. The time-series data were used only for the CEI index. Furthermore, to compare the results obtained from GEOBIA, the slicing technique was used at the CEI level. After the training, the DT was applied to the vegetation indices generating the thematic map of the spatial distribution of soybean. In accordance with the error matrix and kappa parameter analysis, tests for statistical significance were created. Results indicate that the classification achieved by Kappa coefficients is 0.76. In short, the obtained results proved that combining vegetation indices and time-series data using GEOBIA return promising results for mapping soybean plantation on a regional scale.  相似文献   

19.
Abstract

Multi‐temporal ERS‐1 SAR data acquired over a large agricultural region in West Bengal was used to classify kharif crops like rice, jute and sugarcane. Rice crop grown under lowland management practice showed a temporal characteristic. The dynamic range of backscatter was highest for this crop in temporal SAR data. This was used to classify rice using temporal SAR data. Such temporal character was not observed for the other study crops, which may be due to the difference in cultivation practice and crop calendar. Significant increase in backscatter from the ploughed fields was used to derive information on onset and duration of land preparations. Synergistic use of optical remote sensing data and SAR data increased the separability of rice crop from homesteads and permanent vegetation classes.  相似文献   

20.
The spectroradiometric retrieved reflectance of a local crop, namely, beans (Phaseolus vulgaris), is directly compared to the reflectance of Landsat 5TM and 7ETM+ atmospherically corrected and uncorrected satellite images. Also, vegetation indices from the same satellite images—atmospherically corrected and uncorrected—are compared with the corresponding vegetation indices produced from field measurements using a spectroradiometer. Vegetation Indices are vital in the estimation of crop evapotransiration under standard conditions (ETc) because they are used in stochastic or empirical models for describing crop canopy parameters such as the Leaf Area Index (LAI) or crop height. ETc is finally determined using the FAO Penman-Monteith method adapted to satellite data, and is used to examine the impact of atmospheric effects. Regarding the reflectance comparison, the main problem was observed in Band 4 of Landsat 5TM and 7ETM+, where the difference, for uncorrected images, was more than 20% and statistically significant. Results regarding ETc show that omission or ineffective atmospheric corrections in Landsat 5TM,/7ETM+ satellite images always results in a water deficit when estimating crop water demand. Diminished estimated crop water requirements can result in a reduction in output or, if critical, crop failure. The paper seeks to illustrate the importance of removing atmospheric effects from satellite images designated for hydrological purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号