首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The suitability of marsh sites for sea‐level studies was examined based on field experiments along a transect from low to high marsh. Bead distributions were determined both seasonally and after 7 years. Seasonal sediment mixing was greatest in the low marsh and in the late spring and early summer, when biological activity is greatest. However, after an initial interval of relatively intense reworking, the bead concentrations reached an approximate equilibrium profile characteristic of each marsh environment as reflected by the profiles obtained after 7 years. Mixed‐layer thickness is greatest (>10 cm) in the intermediate and low marsh, and burial rates are rapid (3.7–11.1 mm yr?1). Moreover, burial rates are comparable to or even surpass longer‐term (30 to >150 yr) radiotracer‐derived sediment accumulation rates and rates of local and regional sea‐level rise (~4 mm yr?1). Therefore, sediment accumulation rates appear to reflect primarily sediment resuspension/redeposition within the system due to bioturbation. Thus, bioturbation may be critical to the ability of marshes to keep pace with sea level, while seemingly precluding the use of low marsh for high‐resolution sea‐level studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Episodic erosion and resedimentation of valley‐side glacigenic drift is evident at three sites in the Scottish Highlands in the form of buried in situ palaeosols intercalated with stacked sediment units. Radiocarbon dating of 10 palaeosols exposed in sections in debris cones suggests that gully erosion and redeposition of drift represents asynchronous debris flow and slopewash activity within the past 6⋅5 cal.kyr. Palynological and charcoal analyses confirm that reworking was unrelated to burning of vegetation, and post‐dated the main phase of anthropogenic woodland clearance at two sites, although the possibility that recent debris flow activity in Glen Docherty may have been associated with removal of woodland cover cannot be dismissed. However, the collective evidence points to discrete, extreme storm‐generated events of random occurrence as the most likely cause of episodes of enhanced slope reworking at the sites investigated. Evidence for periodic climatic deterioration is more equivocal. By implication, the accumulation of substantial debris cones in upland Britain may reflect primarily the reworking of sediment during extremely rare, intense rainstorms, essentially independent of progressive climate changes. Consequently, caution is necessary in using debris flow stratigraphies alone as a means of reconstructing former long‐term climatic changes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Bedrock fission‐track analysis, high‐resolution petrography and heavy mineral analyses of sediments are used to investigate the relationships between erosion and tectonics in the Western Alps. Along the Aosta Valley cross‐section, exhumation rates based on fission‐track data are higher in the fault‐bounded western block than in the eastern block (0.4–1.5 vs. 0.1–0.3 mm yr−1). Erosion rates based on the analysis of bed‐load in the Dora Baltea drainage display the same pattern and have similar magnitudes in the relative sub‐basins (0.4–0.7 vs. 0.04–0.08 mm yr−1). Results highlight that climate, relief and lithology are not the controlling factors of erosion in the Western Alps. The main driving force behind erosion is instead tectonics that causes the differential upward motion of crustal blocks.  相似文献   

4.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

6.
Aeolian sand and dust in polar regions are transported offshore over sea ice and released to the ocean during summer melt. This process has long been considered an important contributor to polar sea floor sedimentation and as a source of bioavailable iron that triggers vast phytoplankton blooms. Reported here are aeolian sediment dispersal patterns and accumulation rates varying between 0·2 g m?2 yr?1 and 55 g m?2 yr?1 over 3000 km2 of sea ice in McMurdo Sound, south‐west Ross Sea, adjacent to the largest ice free area in Antarctica. Sediment distribution and the abundance of southern McMurdo Volcanic Group‐derived glass, show that most sediment originates from the McMurdo Ice Shelf and nearby coastal outcrops. Almost no sediment is derived from the extensive ice free areas of the McMurdo Dry Valleys due to winnowed surficial layers shielding sand‐sized and silt‐sized material from wind erosion and because of the imposing topographic barrier of the north‐south aligned piedmont glaciers. Southerly winds of intermediate strength (ca 20 m sec?1) are primarily responsible for transporting sediment northwards and offshore. The results presented here indicate that sand‐sized sediment does not travel more than ca 5 km offshore, but very‐fine sand and silt grains can travel >100 km from source. For sites >10 km from the coast, the mass accumulation rate is relatively uniform (1·14 ± 0·57 g m?2 yr?1), three orders of magnitude above estimated global atmospheric dust values for the region. This uniformity represents a sea floor sedimentation rate of only 0·2 cm kyr?1, well below the rates of >9 cm kyr?1 reported for biogenic‐dominated sedimentation measured over much of the Ross Sea. These results show that, even for this region of high‐windblown sediment flux, aeolian processes are only a minor contributor to sea floor sedimentation, excepting areas proximal to coastal sources.  相似文献   

7.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

8.
This paper reviews evidence from previous growth‐rate studies on lichens of the yellow‐green species of Subgenus Rhizocarpon—the family most commonly used in lichenometric dating. New data are presented from Rhizocarpon section Rhizocarpon thalli growing on a moraine in southern Iceland over a period of 4.33 yr. Measurements of 38 lichen thalli, between 2001 and 2005, show that diametral growth rate (DGR, mm yr?1) is a function of thallus size. Growth rates increase rapidly in small thalli (<10 mm diameter), remain high (ca. 0.8 mm yr?1) and then decrease gradually in larger thalli (>50 mm diameter). Mean DGR in southern Iceland, between 2001 and 2005, was 0.64 mm yr?1 (SD = 0.24). The resultant growth‐rate curve is parabolic and is best described by a third‐order polynomial function. The striking similarity between these findings in Iceland and those of Armstrong ( 1983 ) in Wales implies that the shape of the growth‐rate curve may be characteristic of Rhizocarpon geographicum lichens. The difference between the absolute growth rate in southern Iceland and Wales (ca. 66% faster) is probably a function of climate and micro‐environment between the two sites. These findings have implications for previous lichenometric‐dating studies, namely, that those studies which assume constant lichen growth rates over many decades are probably unreliable. © British Geological Survey/Natural Environment Research Council copyright 2006. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

9.
A re‐analysis of sea‐level data from eastern Australia based on 115 calibrated C‐14 ages is used to constrain the origin, timing and magnitude of sea‐level change over the last 7000 years. We demonstrate that the Holocene sea‐level highstand of +1.0–1.5 m was reached ~7000 cal yr bp and fell to its present position after 2000 yr bp . These findings are in contrast to most previous studies that relied on smaller datasets and did not include the now common conversion of conventional C‐14 ages to calendar years. During this ~5000 year period of high sea level, growth hiatuses in oyster beds and tubeworms and lower elevations of coral microatolls are interpreted to represent short‐lived oscillations in sea‐level of up to 1 m during two intervals, beginning c. 4800 and 3000 cal yr bp . The rates of sea‐level rise and fall (1–2 mm yr?1) during these centennial‐scale oscillations are comparable with current rates of sea‐level rise. The origin of the oscillations is enigmatic but most likely the result of oceanographic and climatic changes, including wind strengths, ice ablation, and melt‐water contributions of both Greenland and Antarctic ice sheets.  相似文献   

10.
We present 10Be‐based basin‐averaged denudation rates for the entire western margin of the Peruvian Andes. Denudation rates range from c. 9 mm ka?1 to 190 mm ka?1 and are related neither to the subduction of the Nazca plate nor to the current seismicity along the Pacific coast and the occurrence of raised Quaternary marine terraces. Therefore, we exclude a tectonic control on denudation on a millennial time‐scale. Instead, we explain >60% of the observed denudation rates with a model where erosion rates increase either with mean basin slope angles or with mean annual water discharge. These relationships suggest a strong environmental control on denudation.  相似文献   

11.
黄土丘陵区土壤侵蚀链垂直带水沙流空间分布   总被引:4,自引:0,他引:4       下载免费PDF全文
采用多坡段组合模型、人工模拟降雨实验研究了土壤侵蚀链垂直带水沙流空间分布变化特征。结果表明:愈向下坡方向的坡段产流量愈大,单位面积、单位时间的产流量按坡段排列为:谷坡>梁峁坡下部>梁峁坡中部>梁峁坡上部。雨强为29.7mm/h时,坡面上没有沟蚀发育;雨强为60.5mm/h时,细沟主要分布在梁峁坡下部和谷坡处;雨强为90 2mm/h时,各种侵蚀形态在坡面均有较好发育,细沟的出现部位一直伸展到梁峁坡中部和上部之间。由于上坡来水来沙的作用,梁峁坡的产沙量增大了20.2%~63.5%,谷坡的产沙量增大了42.9%~74.5%。  相似文献   

12.
Glaciers erode bedrock but are also efficient conveyors of debris supplied during a cycle of glaciation by processes other than basal erosion. In this dual capacity as both an eroding and a transporting agent lies the ambiguity of ‘glacial erosion’ as a geomorphic process, with implications for methods of measuring the removal of rock mass by glaciers in the geological past, and for interpreting what exactly the consequences have been on topography and elevation change. A global review of ~400 Quaternary glacial denudation rates estimated from five different measurement techniques provides values ranging between 10?4 and 10 mm yr?1. We investigate the causes of such wide variability by examining the respective influences of environmental setting and methodological bias. A reference frame chosen for assessing these issues is the Massif du Carlit (Pyrenees, France), where a quantified mass balance of the well preserved glacial, periglacial and paraglacial deposits was made possible by detailed geomorphological mapping and terrestrial cosmogenic nuclide dating of extant erosional and depositional landform sequences. Resulting age brackets helped to define three main episodes of ice-cap growth and decline, each characterized by a volume of debris and a mappable source area. Erosion rates were expressed in two ways: (i) as spatially averaged denudation rates (D) during the successive stages of glacial advance to the line of maximum ice extent (MIE), post-MIE ice recession, and Lateglacial cirque readvance, respectively; and (ii) as cirque-wall recession rates (R) where moraine facies criteria indicated a supraglacial provenance of debris. Results indicate low erosion (D  0.05 mm yr?1) during the ice advance phase, probably because of thin or passive ice covering the low-gradient subglacial topography that occurs just above the late Pleistocene equilibrium line altitude (2.2–2.4 km). Erosion rates peaked (D  0.6 mm yr?1 and R  2.4–4.5 mm yr?1) during the main transition to ice-free conditions, when deglacial debuttressing promoted the rapid response of freshly exposed slope systems to new equilibrium conditions in the steep crest zone. Lateglacial D- and R-values declined to 0.2–0.3 mm yr?1, with indications of spatially variable R controlled by lithology. In this environment glaciers overall behaved more as conveyors of debris supplied by supraglacial rock exposures in the mountain crest zone than as powerful modifiers of subglacial topography. This explains the widespread preservation of deep, in situ preglacial weathering profiles on relict Cenozoic land surfaces in the deglacierized part of the Eastern Pyrenees. When plotted on the global data set analyzed and discussed in the review, the East Pyrenean erosion rates stand out as being amongst the lowest on record.  相似文献   

13.
This study addresses gaps in understanding the relative roles of sea‐level change, coastal geomorphology and sediment availability in driving beach erosion at the scale of individual beaches. Patterns of historical shoreline change are examined for spatial relationships to geomorphology and for temporal relationships to late‐Holocene and modern sea‐level change. The study area shoreline on the north‐east coast of Oahu, Hawaii, is characterized by a series of kilometre‐long beaches with repeated headland‐embayed morphology fronted by a carbonate fringing reef. The beaches are the seaward edge of a carbonate sand‐rich coastal strand plain, a common morphological setting in tectonically stable tropical island coasts. Multiple lines of geological evidence indicate that the strand plain prograded atop a fringing reef platform during a period of late‐Holocene sea‐level fall. Analysis of historical shoreline changes indicates an overall trend of erosion (shoreline recession) along headland sections of beach and an overall trend of stable to accreting beaches along adjoining embayed sections. Eighty‐eight per cent of headland beaches eroded over the past century at an average rate of ?0·12 ± 0·03 m yr?1. In contrast, 56% of embayed beaches accreted at an average rate of 0·04 ± 0·03 m yr?1. Given over a century of global (and local) sea‐level rise, the data indicate that embayed beaches are showing remarkable resiliency. The pattern of headland beach erosion and stable to accreting embayments suggests a shift from accretion to erosion particular to the headland beaches with the initiation of modern sea‐level rise. These results emphasize the need to account for localized variations in beach erosion related to geomorphology and alongshore sediment transport in attempting to forecast future shoreline change under increasing sea‐level rise.  相似文献   

14.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The stability of sublittoral, fine-grained sediments in a subarctic estuary   总被引:1,自引:0,他引:1  
The erodibility of natural estuarine sediments was measured in sit along a longitudinal transect of Manitounuk Sound, Hudson Bay, using the benthic flume Sea Carousel. Sedimentation processes along the transect varied from continuous, rapid, post-glacial sedimentation in the inner Sound, to glacial outcrops and seabed reworking of the outer Sound. The grain size and physical bulk properties reflect changes in depositional environment and correlate with sediment erosion threshold stress (τc), erosion rate (E), erosion type and still-water mass settling rate. There was a steady increase in τc (0·8–2·0 Pa) with distance down the Sound in parallel with the decreasing sedimentation rate (0·003–0·001 m yr?1) and increasing sediment bulk density (1650–2010 kg m?3). The near-surface friction coefficient varied up to 68° in proportion to the clay content of post-glacial material. Glacial sediments were characterized by variable results and generally higher friction coefficients. Seabed erosion in Sea Carousel began with surface creep of loose aggregates, pellets and organic debris. This was followed by Type I bed erosion at rates that varied between 0·0002 and 0·0032 kg m?2 s?1 (mean 0·0015). Type I peak erosion rate was inversely related to applied bed shear stress (τo). Type II erosion succeeded Type I, often after a broad transitional period. Simulations of suspended sediment concentration in Sea Carousel were made using four commonly used erosion (E) algorithms. The best results were obtained using Krone's dimensionless ratio relationship: E=Moc-1). Simulations were highly sensitive to the definition of erosion threshold with sediment depth [τc(z)]. Small errors in definition of τc(z) caused large errors in the prediction of suspended sediment concentration which far exceeded differences between the methods tested.  相似文献   

16.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

18.
Channel bank erosion processes are controlled by numerous factors and as such are both temporally and spatially variable. The significance of channel bank erosion to the sediment budget is difficult to quantify without extensive fieldwork/data analysis. In this study, the importance of key physical factors controlling channel bank erosion, including channel slope, upstream catchment area, channel confinement, and sinuosity, was explored using regression analysis. The resulting analysis can be used in practical studies to provide a first approximation of bank erosion rates (in catchments similar to those investigated). A data set of channel bank erosion rates covering eight contrasting river catchments across England and Wales, over a time period of up to 150 years, was created using a modified GIS methodology. The best predictors were found to be upstream area, channel confinement, and sinuosity with respect to dimensionless width-averaged retreat rates (m m?1 yr?1). Notwithstanding these relationships, the results highlight the variability of the magnitude of sediment production by channel bank erosion both within and between catchments.  相似文献   

19.
Monthly measurements of suspended sediment concentration and salinity were made at 29 stations along the axis of Long Island Sound from August 1987 through February 1988. The measurements were combined in a 29-segment, two-layer box model to calculate the total sediment fluxes and accumulation rates. Estimates of the total suspended load range from 300,000 metric tons, corresponding to an average residence time of about 2.3 months. Average accumulation rates calculated with the model ranged from about 0.024 mm month?1 to 0.150 mm month?1 for a net annual rate of 0.92 mm yr?1. This is in good agreement with geochemically determined sedimentation rates of 0.75±0.13 mm yr?1 and suggests an oceanic source of sediment equivalent to about 45% of the mud accumulated in the sound.  相似文献   

20.
A large number of radiocarbon dates from charcoal layers buried beneath stacked solifluction lobes at Pippokangas, in the northern boreal zone of Finnish Lapland, are used to reconstruct a Holocene history of solifluction. Although the site is surrounded by Scots pine forest, the solifluction lobes occur on the lower slopes of a kettle hole, the microclimate of which prevents the growth of trees. Samples from the upslope end of charcoal layers have enabled the recognition of four synchronous phases of solifluction lobe initiation: 7400–6700, 4200–3400, 2600–2100 and 1500–500 cal. yr BP. Rates of lobe advance are shown to be lobe‐dependent and age‐dependent: initially, average rates were commonly 0.14–0.19 cm yr?1, later falling to 0.02–0.07 cm yr?1 or less as the lobes approached the bottom of the slope. The absence of charcoal prior to 8000 cal. yr BP, together with single IRSL and TL dates, indicate a relatively stable early Holocene landscape. The onset of solifluction around 7400 cal. yr BP. appears to have followed the immigration of pine around the site, which increased the frequency of forest fires. Phases of solifluction activity seem to have been triggered by millennial‐scale variations in effective moisture (the climatic hypothesis), rather than episodic burning of the surface vegetation cover (the geoecological hypothesis), although climate may also have affected fire frequency and severity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号