首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
汤加-斐济地区300 km间断面的SdP转换波证据   总被引:2,自引:1,他引:1       下载免费PDF全文
上地幔速度间断面的存在形态及其性质的研究对于理解地球构造运动以及地球内部物质运移过程具有重要意义.针对上地幔中可能存在的300 km速度间断面, 本文收集日本Hi-net地震台网所记录的2004年以来、震源深度在145~219 km之间、且震级为mb5.0~6.0之间的6个汤加-斐济地区地震的波形资料. 利用4次根倾斜叠加方法对收集到的波形资料进行叠加处理,获得了相应的叠加灰度图, 从中提取的离源下行的SdP次生转换震相, 进而据此确认了汤加-斐济地区下方的300 km深度附近的速度界面.因该界面起伏较小, 更倾向于该界面为辉石的斜方到高压单斜相变面; 同时基于转换震相的强度差异,我们发现该界面速度跃变量要大于410 km间断面, 因而俯冲带的化学分异和脱水过程产生的较轻物质可能在该界面处形成一定的聚集,使得汤加-斐济地区的该界面更容易被观测到.  相似文献   

2.
受俯冲残留体影响的410km间断面起伏形态的研究对于确定地球内部物质构成及地球动力学过程具有重要作用.帕米尔—兴都库什俯冲区域拥有全球少有的中、深源地震,为研究410km间断面起伏提供了良好的资源.利用日本Hi-net地震台网和美国TA台阵记录的帕米尔—兴都库什俯冲区域的6个震源深度为154.0~220.9km、震级为Mb5.6~6.4的中、深源地震的短周期/宽频带波形资料,经过4次根倾斜叠加处理,获得了36组Hi-net子台网和TA记录资料的倾斜叠加灰度图,从中提取了与410km间断面相关的次生转换震相SdP,发现受俯冲残留体影响下的410km间断面的深度位于372~398km.较之持续俯冲的西太平洋地区海洋岩石圈,研究区域俯冲滞留体对于410km间断面的相变线的影响要小得多.  相似文献   

3.
The detailed structure of the Earths interior is a major field of geophysics study and the existence and the properties of mantle discontinuities are its important content. Since the lateral heterogeneity was discovered with the seismic tomography method,…  相似文献   

4.
Introduction The detail structure of the Earths interior is a major field of geophysics and the existences and properties of mantle discontinuities are its important content. Based on the seismic tomographic results (Fukao, et al, 1992, Van der Hilst, et al, 1991) and the distribution of earthquake hypocenters in the Circum-Pacific region and other regions, the effects of subducting slab at different regions on the 660 km discontinuity are different: some subducting slabs penetrate through; …  相似文献   

5.
南美地区下地幔速度界面结构研究   总被引:2,自引:2,他引:0       下载免费PDF全文
下地幔间断面是地球内部结构研究的重要课题,对于理解地球深部的动力过程具有重要意义.美国西部密集地震台网记录到的南美洲太平洋地区深震的短周期波形资料有利于震源下方下地幔间断面的研究.本文收集了美国西北太平洋地震台网和犹他大学地震台网所记录的南美洲西部俯冲地区15个深震的19组短周期垂向台网资料,并利用4次根倾斜叠加方法提取震源下方下地幔中速度界面上发生转换的次生震相SdP,据此发现南美洲西部下方下地幔中800~1200 km深度范围内存在明显的转换点集中,主要分布在900,1000和1100 km三个深度附近,三个速度界面具有不同的起伏形态,应为在研究区域双层地幔对流中间边界层.  相似文献   

6.
We performed a receiver function analysis on teleseismic data recorded along two dense seismic profiles and from 4 broadband regional seismic stations across the northeastern Tibetan plateau. The crustal thickness and vP/vS ratio were measured by the H-κ domain search algorithm. The Moho discontinuity across the Haiyuan arc fault zone was also revealed by common conversion point (CCP) imaging. Our study results show that the crustal thickness and the vP/vS ratio were 42–56 km and 1.60–1.88, respectively. The crustal thickening on the northeastern margin indicates that the crust is shortening or that there was a superimposition of crusts during the collision of the Tibetan plateau with Eurasian block. Our results suggest that Haiyuan fault likely resulted from the interactions of high temperature and pressure conditions during the collision of the Indian and Asian continents. The Moho beneath the Haiyuan tectonic region exhibits an obvious offset and a vague discontinuity according to CCP imaging. This study suggests that the Haiyuan arc fault zone is a trans-crustal fault that cuts through the Moho in the northeastern Tibetan Plateau. Moreover, there are indications of strong deformation in the intensive crustal extrusion from the interior of the Tibetan Plateau to its northeastern margin.  相似文献   

7.
For studying the structure of the lithosphere in southern Ukraine, wide-angle seismic studies that recorded the reflected and refracted waves were carried out under the DOBRE-4 project. The field works were conducted in October 2009. Thirteen chemical shot points spaced 35–50 km apart from each other were implemented with a charge weight varying from 600 to 1000 kg. Overall 230 recording stations with an interval of 2.5 km between them were used. The high quality of the obtained data allowed us to model the velocity section along the profile for P- and S-waves. Seismic modeling was carried out by two methods. Initially, trial-and-error ray tracing using the arrival times of the main reflected and refracted P- and S-phases was conducted. Next, the amplitudes of the recorded phases were analyzed by the finite-difference full waveform method. The resulting velocity model demonstrates a fairly homogeneous structure from the middle to lower crust both in the vertical and horizontal directions. A drastically different situation is observed in the upper crust, where the V p velocities decrease upwards along the section from 6.35 km/s at a depth of 15–20 km to 5.9–5.8 km/s on the surface of the crystalline basement; in the Neoproterozoic and Paleozoic deposits, it diminishes from 5.15 to 3.80 km/s, and in the Mesozoic layers, it decreases from 2.70 to 2.30 km/s. The subcrustal V p gradually increases downwards from 6.50 to 6.7–6.8 km/s at the crustal base, which complicates the problem of separating the middle and lower crust. The V p velocities above 6.80 km/s have not been revealed even in the lowermost part of the crust, in contrast to the similar profiles in the East European Platform. The Moho is clearly delineated by the velocity contrast of 1.3–1.7 km/s. The alternating pattern of the changes in the Moho depths corresponding to Moho undulations with a wavelength of about 150 km and the amplitude reaching 8 to 17 km is a peculiarity of the velocity model.  相似文献   

8.
长白山-镜泊湖火山区上地幔间断面接收函数研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用布设在长白山地区的19个PASSCAL宽频带流动地震台站近一年的远震记录和布设在镜泊湖火山区14个宽频带轻便数字地震仪三个月的远震记录,共得到高质量的423个接收函数,通过对这些接收函数的共转换点叠加得到研究区的间断面的分布及形态.研究结果表明,研究区存在410、520km和660km间断面.410km和660km间断面较为连续且具有正相关性质,410km间断面在长白山天池火山下局部上隆,660km间断面具有复杂的多界面性质.410km和660km之间的过渡带厚约250km,接近全球平均水平.珲春深震区下660km界面下陷,其上还有多组震相,这些震相在珲春深震区东西两侧不连续,推测西太平洋板块至少已经俯冲到欧亚大陆下的上地幔过渡带中.410km间断面在长白山火山区下局部上隆,660km间断面具有的复杂结构和珲春深源地震的发生均与俯冲板块在过渡带中的活动有关. 俯冲板块在受到660km间断面的强大阻力后,在660km间断面之上变为近水平扩张.推测在欧亚大陆下西太平洋板块的最前端可能已经不是一个完整的整体,或许是由几个有一定联系的板块残片组成.  相似文献   

9.
Eleven PASSCAL broadband digital seismic stations were employed in the Tibetan Plateau by the Sino-US team from September, 1991 to June, 1992. Seven of them were distributed along the Qinghai-Tibet highway, others in Maqin and Yushu of Qinghai Province, Linzhi and Xigatze of Tibet. The data included 31 local earthquakes recorded by these stations from July, 1991 to January, 1992. Considering the characters of digital data, we identified the seismic phases carefully in several methods using SAC softwares (Seismic Analysis Code) in SUN workstation. We compared the seismic phases after converting the seismograms of the single stations to the seismic profiles; analyzed the first arrivals of P waves in the incident planes by rotating 3 component seismic records; identified the seismic phases from the particle motion pictures. The Pn apparent velocities were calculated in the distance range of 230–1200 km from Linzhi earthquakes, western Changtang earthquakes, Xitieshan and Gonghe earthquakes and the earthquakes in India. The results show that the Pn velocities change slightly in the Tibetan Plateau (8.0–8.1 km/s). These values near the velocities at the uppermost mantle of the normal continents. The Moho undulation in the Tibetan Plateau was also studied by using Pn data by the time-term method. The primary results indicate that the Moho beneath the Tibetan Plateau is flat, and its depths are 67–70 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 593–600, 1992.  相似文献   

10.
The D″ layer, which is located atop the core–mantle boundary, has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D″ layer involves the use of the SdS phases between the S and ScS phases, which requires that certain stringent conditions be satisfied with respect to an epicentral distance and earthquake depth. Therefore, this approach is only practical for investigating the presence and topography of velocity interfaces in certain local regions around the world. The Russia–Kazakhstan border region has been a “blind spot” with respect to this detection method. The seismic network deployed in the northeastern margin of the Tibetan Plateau has recorded relatively clear SdS phases for the M S 6.3 earthquake that occurred in Spain on April 11, 2010, allowing this blind spot to be studied. This paper compares the observed waveforms and synthetics and uses the travel times of the relevant phases to obtain a D″ discontinuity depth between 2,610 and 2,740 km in the examined area. This study provides the first results regarding the depth of the D″ layer discontinuity for this region and represents an important addition to the global studies of the D″ layer.  相似文献   

11.
12.
Comparison of some array dt/ studies with the global travel times of Dziewonski and Anderson (1983) leads to the conclusion that a discontinuity in the P travel times between 80° and 85° is consistent with both sets of data. This discontinuity in dt/ corresponds to an increase in velocity of about 0.1 km/sec between depths of 2400 and 2600 km. Models of the P velocity distribution which match the Dziewonski and Anderson travel times reasonable well have the shadow zone for short-period “diffracted” P beginning at about 110° arc distance.  相似文献   

13.
We use 15 seismic stations,crossing the Qinling orogen(QO),Weihe graben(WG)and Ordos block(OB),to study the crustal structures by receiver functions(RFs)methods.The results show quite a difference in crustal structures and materials of three tectonic units(orogenic belt,extentional basin and stable craton).The average crustal thickness in the northern QO is 37.8 km,and Poisson ratio is 0.247,which indicates the increase of felsic materials in QO.In the southern OB,the average crustal thickness is 39.2 km and Poisson ratio is 0.265.Comparatively high value of Poisson ratio is related with old crystallized base in the lower crust and shallow sediments.The artificial RFs reveal that low-velocity and thick sediments have a significant effect on phases of the Mohorovi i discontinuity(Moho).As a result,the Moho phases in WG are tangled.S-wave velocity(VS)inversion shows that there are shallow sediment layers with 4–8 km’s thickness and high velocity zones in the middle-lower crust in WG.Complex Moho structure and high velocity zone may have been induced by the activities of the Weihe faults series.  相似文献   

14.
The dense broadband seismic network provides more high-quality waveform that is helpful to improve constraint focal depth of shallow earthquake. Many shallow earthquakes occurring in sediment were regarded as induced events. In Sichuan basin, gas industry and salt mining are dependent on fluid injection technique that triggers microseismicity. We adopted waveform inversion method with regional records to obtain focal mechanism of an M s4.8 earthquake at Changning. The result suggested that the Changning earthquake occurred at a ESE thrust fault, and its focal depth was about 3 km. The depth phases including teleseismic pP phase and regional sPL phase shows that the focal depth is about 2 km. The strong, short-period surface wave suggests that this event is a very shallow earthquake. The amplitude ratio between Rayleigh wave and direct S wave was also used to estimate the source depth of the mainshock. The focal depth (2–4 km) is far less than the depth of the sedimentary layer thickness (6–8 km) in epicentral region. It is close to the depth of fluid injection of salt mining, which may imply that this event was triggered by the industrial activity.  相似文献   

15.
The North China Craton (NCC) is one of the oldest cratons on earth. Several important tectonic transformations of Mesozoic-Cenozoic tectonic regime led to the destruction of the North China craton. The knowledge of crustal structure can provide important constraints for the formation and evolution of cratons. New maps of sediment thickness, crustal thickness (H) and vP/vS (κ) in the central and western NCC were obtained using sequential H-κ stacking. P-wave receiver functions are calculated using teleseismic waveform data recorded by 405 stations from ChinArray project. Benefiting from the densely distribution of temporary seismic stations, our results reveal details of the crustal structure in the study area. The thickness of sedimentary layer in North China ranges from 0–6.4 km, and the thickest sedimentary layer is in Ordos block and its surroundings (about 2.8–6 km); The thickness of sedimentary layer in the Mongolia fold belt and Yinshan orogenic belt is relatively thin (less than 1 km). The crustal thickness of the study area varies between 27–48 km, of which the crust of the North China Plain is about 30–33 km, the central NCC is about 33–40 km, and the Ordos block is 40–48 km thick. The average vP/vS ratios in the study area is mostly between 1.66 and 1.90, and that in the Yanshan-Taihang mountain fold belt is between 1.70 and 1.85, and that in the Ordos block is between 1.65 and 1.90, with an average value of 1.77, indicating the absence of a thick basaltic lower crust. The obvious negative correlation between crustal thickness and average vP/vS ratio within Ordos and Central Asia orogenic belt may be related to magmatic underplating during the crustal formation. There is no significant correlation between the crustal thickness and the vP/vS ratio in the Lüliang-Taihang mountain fold belt, which may be related to the multiple geological processes such as underplating and crustal extension and thinning in this area. The lack of correlation between crust thickness and topography in the central orogenic belt and the North China Basin indicates the topography of these areas are controlled not only by crustal isostatic adjustment but also by the lithospheric mantle processes.  相似文献   

16.
The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry and ongoing deformation processes using modern seismological methods. A joint inversion for hypocentres and a velocity model plus a surface-wave group dispersion curve analysis were used to obtain an adapted velocity model, customised for mid- and long-period waveform modelling. Based on the new velocity model, regional waveform data of the mainshock and larger aftershocks (M w ?≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking fault planes. The mainshock ruptured a 28° south-dipping area of 24 × 21 km along a north-easterly direction. The rupture plane of the mainshock does not coincide with the aftershock distribution, neither in map view nor with respect to depth. The considered aftershocks form two main clusters. The eastern cluster is associated with the mainshock. The western cluster does not appear to be connected with the rupture plane of the mainshock but, instead, indicates a second activated fault plane dipping at 85° towards the north.  相似文献   

17.
本文基于中国地震观测台网记录到的震中距为10°~23°之间琉球俯冲区一个中深源地震的P波三重震相信息,研究了下扬子克拉通转换带顶部P波速度结构.通过射线追踪和理论地震图与观测地震波形的对比,发现下扬子克拉通下方的410 km间断面为一厚度20 km的梯度带,其上存在一由西南向东北变厚的低速层,厚度变化40~57 km,P波速度减低2.7%~4.5%.该低速层可以被认为是由于地幔橄榄岩部分熔融引起的.  相似文献   

18.
The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude (M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.  相似文献   

19.
StudyonfinestructureofcrustmantletransitionzoneinYanqingHailaibasinbasedonCDPandDSSdataJINCHENG1)(成瑾)QINGHELI2)(李清河)1)In...  相似文献   

20.
In the steady state, the convective boundary layer (CBL) (the transition from the lithosphere to the convecting mantle, the lithosphere-asthenosphere boundary) is on the verge of stability. This determines its depth, thickness, and the steady-state temperature distribution in the lithosphere. Had the mantle been homogeneous, the base of the lithosphere at the current potential temperature would lie globally at the same depth H rh of 50 to 70 km. Actually, the regime of interaction of the mantle convection with the lithosphere is determined by the relationship between this depth and the thickness H depl of the chemical boundary layer including the crust and the layer of the depleted rock. If the thickness of the chemical boundary layer is small H depl < H rh, as it is the case in the present-day oceanic mantle, the suboceanic regime is established with the mantle convection that does not reach the base of the chemical boundary layer. In this case, the top of CBL is located at depth H rh, while the oceanic heat flow and the depth of the seafloor only depend on the potential temperature T p and, within the areas where the crust is older than 60 to 70 Ma, are the same everywhere far from the disturbed territories (the hot points and the subduction zones). The absence of noticeable distinctions between the heat flow in the different oceanic basins suggests a global constancy of the potential temperature. If H depl > H rh, the subcontinental regime of the interaction of the mantle convection with the lithosphere is established. In this case, the CBL is immediately adjacent to the depleted lithosphere, its top is located at depth H depl, and the surface heat flow q(T p, H depl) not only depends on the potential temperature T p but also on the the thickness of the depleted lithosphere H depl; it decreases with increasing H depl and, therefore, with the age of the lithosphere. Given the potential temperature, the dependence q(T p, H depl) agrees well with the envelope of the results of kimberlite xenolith thermobarometry presented in the diagram of the deepest xenolith depth as a function of the heat flow. It is likely that in the lowest part of the continental lithosphere there is a zone of horizontal shear deformation, from where kimberlites entrain the strongly deformed and, at the same time, the deepest xenoliths. Besides, the azimuthal anisotropy of seismic velocities can be associated with this zone. The change in its direction with depth can be observed as the Lehmann discontinuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号