首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract In the Latnjavagge drainage basin (68°21′N, 18°29′E), an arctic‐oceanic periglacial environment in northernmost Swedish Lapland, the fluvial sediment transport and the characteristics and importance of high‐magnitude/low‐frequency fluvial events generated by intense snowmelt or heavy rainfall have been investigated and compared with snowmelt‐ and rainfall‐induced discharge peaks in the Levinson‐Lessing Lake basin (Krasnaya river system) on the Taimyr Peninsula, an arctic periglacial environment in northern Siberia (74°32′N, 98°35′E). In Latnjavagge (9 km2) the intensity of fluvial sediment transport is very low. Most of the total annual sediment load is transported in a few days during snowmelt generated runoff peaks. Due to the continuous and very stable vegetation covering most areas below 1300 m a.s.l. in the Latnjavagge catchment, larger rainfall events are of limited importance for sediment transport in this environment. Compared to that, in the c. 40 times larger Krasnaya riversystem rainfall‐generated runoff peaks cause significant sediment transport. The main sediment sources in the Latnjavagge drainage basin are permanent ice patches, channel debris pavements mobilized during peak discharges and exposing fines, and material mobilized by slush‐flows. In the Krasnaya river system river bank erosion is the main sediment source. In both periglacial environments more than 90% of the annual sediment yield is transported during runoff peaks. The results from both arctic periglacial environments underline the high importance of high‐magnitude/low‐frequency fluvial events for the total fluvial sediment budgets of periglacial fluvial systems. Restricted sediment availability is in both arctic environments the major controlling factor for this behaviour.  相似文献   

2.
Debris flows in the Gleivarhjalli area in northwestern Iceland occurred after a sudden and intensive snowmelt period during 10–12 June, 1999. The area, in the northwestern part of the town of Ísafjörvur, was chosen for a detailed study. Meteorological data and bedrock conditions, triggering mechanisms and geomorphological and human impacts were examined. This paper describes and emphasises the role of rapid snowmelt as a mechanism for the release of debris flows in a subpolar basaltic fjord setting. Post‐event mapping of erosional and depositional landforms showed strong geomorphic impacts of debris flows and their role in mass transfer in a mountainous environment. The estimated denudation rate for the singleevent is 0.29 mm/km2. The use of a new lichen growth curve provides relative dating of previous unreported events. Finally, the paper estimates the mean return period for debris‐flow events in the Gleivarhjalli area as 4–5 years, thus constituting a serious threat to the community.  相似文献   

3.
Gully erosion is commonly associated with agricultural landscapes where vegetation clearance and farming practices increase runoff, leading to fluvial incision. However, gully erosion can also occur in forests that have undergone some form of disturbance, either natural or resulting from human impacts. This paper reports on recent gully development within areas of undisturbed indigenous forest as a result of a high magnitude rainfall event on the East Coast of New Zealand's North Island. This region, through a combination of crushed and sheared rock types, steep topography, and tectonic and climatic setting, has high natural rates of erosion, exacerbated by European deforestation in the late 19th and early 20th centuries.Sequential air photographs, spanning a 58 year period between 1939 and 1997 were used to classify and document the growth and recovery of gully systems in the 14.1 km2 headwaters of the Mangaoporo catchment. Following a severe cyclone in 1988, with a rainfall of 535 mm, there were 21 active gully systems within the indigenous forest. On photography prior to 1988 only four gully systems were present. During this period there were 8 major rainfall events (150–250 mm). Despite further 5 rainfall events of 150–250 mm between 1988 and 1997 all gully systems showed signs of recovery, with a combined reduction in active area of 37%. The nature and location of these features is strongly influenced by lithology (orientation of jointing and bedding), and to a topographic threshold defined by catchment slope and catchment area.  相似文献   

4.
《Geomorphology》2003,49(1-2):45-69
A lahar is a general term for a rapidly flowing mixture of rock debris and water (other than normal streamflow) from a volcano and refers to the moving flow. Located in the populated area of Central Java, the stratovolcano Merapi (2965 m) is prone to lahar generation, due to three main factors: (1) millions of cubic meters of pyroclastic deposits are the product of frequent pyroclastic flows, which have occurred on 2- to 4-year intervals; (2) rainfall intensity is high (often 40 mm in 2 h on average) during the rainy season from November to April; and (3) drainage pattern is very dense. Following the 22 November 1994 eruption of Merapi, 31 rain-triggered lahar events were recorded in the Boyong River between December 1994 and May 1996.On Merapi's slopes, instantaneous sediment concentration at any given time of the lahars varies widely over time and space. Lahars are transient sediment-water flows whose properties are unsteady, so that the sediment load fluctuates during the flow. The boundary between the flow types (debris flow, with sediment concentration >60% volume, or hyperconcentrated flow, with sediment concentration ranges from 20% to 60% volume) may fluctuate within the flow itself. Grain-size distribution, physical composition of sediments, shear stress, yield stress, and water temperature play each a role on this boundary. Natural self-damming and rapid breakout are partly responsible for the sediment variations of the flows.Debris-flow phases at Merapi typically last a few minutes to 10 min, and are often restricted to the lahar front. Debris-flow surges are sometimes preceded and always followed by longer hyperconcentrated flow phases. As a result, mean sediment concentration of the lahars is low, commonly from 20% to 50% volume. Besides, transient normal streamflow phases (sediment concentration <20% volume) can occur between two debris-flow surges.Low sediment load and frequent transient flows in the Merapi channels may result from at least three factors: (1) several breaks-in-slope along the channel increase the deposition rate of sediment, and hinder the bulking capacity of the lahars; (2) source material is mainly coarse debris of “Merapi-type” block-and-ash flows. Consequently, the remobilization of coarse debris is more difficult and the clast deposition is accelerated; (3) variations of rainfall intensity over time and space, common in tropical monsoon rainfall, also influence the sediment load variations of the lahars.Sedimentologic analyses of the lahar deposits in the Boyong River at Merapi encompass clast-supported and matrix-supported debris-flow deposits, hyperconcentrated flow deposits, and streamflow deposits. The stratigraphic succession of massive and stratified beds observed immediately after any given lahar event in the Boyong River indicates that the sediment concentration varies widely over time and space during a single lahar event. Sedimentation rate varies from 3 to 4.5 cm/min during relatively long-lived surges to as much as 20 cm/min during short-lived surges. These results indicate that the sediment load fluctuates during lahar flow, further demonstrating that lahars are transient sediment-water flows with unsteady flow properties.  相似文献   

5.
Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region.Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106−3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273−1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481−557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67−78 years over that same period.  相似文献   

6.
横断山区泥石流空间格局和激发雨量分异性研究   总被引:2,自引:1,他引:2  
胡凯衡  魏丽  刘双  李秀珍 《地理学报》2019,74(11):2303-2313
地形、降雨等环境因子决定了泥石流的时空分布特征,理解泥石流与这些因子的关系有助于区域泥石流灾害风险评估与防灾减灾工作。以横断山区为研究区域,选取降水、气候、地貌、地质、土地覆盖、土壤厚度、高差势能以及湿度指数等因子,利用地理探测器和灰度关联分析等方法,探讨了环境因子与泥石流沟空间分布的关系以及降水特征与泥石流灾害的时间关联性。结果表明,湿度指数是决定泥石流沟空间格局的最主要因子,其次是高差势能和土壤厚度,多年平均分布的降水特征对泥石流沟分布的影响较小。泥石流灾害事件与降水特征的时间关联具有较大的区域异质性。泥石流发生地的激发雨量、湿度指数、高差及土壤厚度的统计分布在不同地貌、地质和气候单元中有明显差异。这表明泥石流预警不仅需要考虑雨量等激发因子,还必须考虑其他影响因素的空间差异性。  相似文献   

7.
《Geomorphology》1997,18(2):61-75
In badland areas of the Ebro Basin, in a semiarid climate, two erosion plots (257 m2; 5° slope and 128 m2; 23° slope) on exposed Tertiary clays were monitored over two years (Nov. 1991–Nov. 1993). This material is characterized by high sodium absorption ratios which lead to high soil dispersivity. The dominant erosion processes in both plots are rilling and sheet erosion. Rainfall intensity was recorded at a weather station, connected to a data-logger, sediment production for single events was collected in tanks, and ground lowering was measured every six months by erosion pins and microtopographic profile gauge techniques. Significant runoff was produced only by rainfall events above 5 mm. Another threshold at 20 mm rain was noted. For rainfalls higher than 20 mm, the 23° slope plot shows a greater runoff response than the 5° one. Rainfall events exceeding this threshold showed a higher sediment production for the steeper slope. In the relationship between precipitation and sediment concentration, an envelope curve can be drawn indicating that any rainfall event of a given amount and intensity has a maximum sediment concentration which we speculate to be a function of the runoff sediment transport capacity. Runoff response and sediment yield in the studied plots are controlled by the rainfall and soil characteristics and their seasonal variations. In both plots, the erosion pins show that erosion rates in rill areas are 25–50% higher than in the interrill areas. Sediment yield recorded by collector devices was higher than the rates measured by erosion pins. The erosion rates based on rill cross-sections by profilometers were higher than the ones recorded by collectors.  相似文献   

8.
云南滑坡泥石流灾害的气象成因与监测   总被引:6,自引:2,他引:6  
解明恩  程建刚  范菠 《山地学报》2005,23(5):571-578
根据云南滑坡泥石流灾害资料,分析了其形成环境与分布特征,给出了典型降水滑坡泥石流灾害事件,研究了滑坡泥石流灾害与气象环境的关系。云南滑坡泥石流灾害主要出现在盛夏7~8月,主要影响天气系统有切变线、冷锋、西风槽、西南涡、孟加拉湾风暴、南海西行台风和两高辐合区。诱发滑坡泥石流灾害的前期降水类型有3种,即暴雨型,中~大雨型和连阴雨型。得出了云南滑坡泥石流发生的区域临界雨量指标,提出了滑坡泥石流灾害的气象监测预警方法。  相似文献   

9.
David J. Milan 《Geomorphology》2012,138(1):319-328
Quantitative assessments of the impacts of extreme floods on channel morphology are rare. Real Time Kinematic (RTK) GPS surveys of a 500-m reach of the Thinhope Burn, an upland gravel-bed stream in the UK, taken in 2003 and 2004 permitted an assessment of geomorphic work whilst the channel was at steady-state. A large flood that occurred on 17 July 2007 resulted in a catastrophic impact to the Thinhope Burn valley floor. The reach was re-surveyed after the event in 2007, and again in 2008 and in 2011. Digital elevation models were produced from the survey data, which allowed the spatial patterns of erosion and deposition and volumetric changes between surveys to be established. A total of 5202 m3 of deposition and 2125 m3 of erosion was recorded in the reach following the flood event. Field walking of the catchment and comparison of aerial photographs for 2003 and 2007 suggested that most of the material mobilised had originated from existing sediment held in terraces and paleoberms on the valley floor. Although slope failures were evident, including peat slides in the headwaters, delivery of sediment from coupling zones to the channel was thought to play a secondary role in the geomorphic response shown by the channel. Similarly, large volumes of erosion and deposition were found after resurveys in 2008 and 2011, suggesting that the system was still in its relaxation phase. The results obtained in this investigation coupled with historical information on the flood history of Thinhope Burn dating back to 1766 suggested that rare large floods are the geomorphically effective flows in the catchment.  相似文献   

10.
The nature of rainfall events is explored through six years of below average rainfall, associated with negative Southern Oscillation Index (SOI), and three years of above average rainfall, associated with positive SOI (and strong La Niña conditions), at arid Fowlers Gap, Australia. There is a greater probability of rainfall in wet years, but the events themselves also change significantly. Rainfall depth per event was 116% larger on average in wet years than dry, and average event rainfall rate was 85% higher. However, these results are influenced by a small number of very large events in the wet years, and events of <2 mm occur at about the same rate in dry and wet years. Rainfall event profiles in dry years showed more Huff first quartile events likely to promote partitioning of rain into infiltration. In contrast, larger events in wet years showed a preponderance of Huff third quartile profiles likely to be associated with greater partitioning of rainfall into overland flow. This co-variation in rainfall event profile with annual rainfall, not previously described, is reasoned to increase the amplitude of ecological impacts of the SOI-related rainfall variability at this site.  相似文献   

11.
科尔沁沙地降雨特征分析——以奈曼旗为例   总被引:2,自引:1,他引:1  
了解降水的当前特征及未来的变化趋势对理解气候变化对区域生态系统的影响具有重要的意义。科尔沁沙地是中国北方农牧交错带的典型区域,年降雨量300~500 mm,对气候变化(特别是降水的变化)非常敏感。对科尔沁沙地沙漠化较为严重的奈曼旗1971-2013年的降水资料进行了分析研究。结果表明:(1)该地区多年平均降水量为338.8 mm,5-9月降雨量占全年降水量的(85.32±7.71)%,5-9月降雨量,年降水量1971-2000年经历了先增加后减少的趋势,2001-2013年有缓慢增加的趋势;同时降水量的年际变异性近10年也呈增加的趋势。(2)5-9月降雨量呈先增大后减小的趋势,在7月最大,为104.2 mm,5月和9月最小(分别为32.7 mm和32.8 mm),月降雨量的年际变率均大于49%;生长季内降雨主要以<10 mm的事件为主,占总降雨事件的64.41%,却仅占总降雨量的16.95%;≥30 mm的降雨事件占总降雨事件的10.96%,占到总降雨量的45.93%,且对总降雨量具有决定性的影响。(3)≥5 mm降雨的平均间隔为9.4 d,以1~10 d为主,占到69.5%,10~20 d(19.5%)的次之;≥30 d的发生频率最小,为3.81%,降雨间隔的年际变异性均呈增加的趋势。(4)生长季降雨日数呈减少的趋势,降雨事件降雨量的变异性与生长季降雨量的变化具有相似性,从2001年开始呈增加的趋势。该地区的降雨量年际变异性强,降雨日数的减少和降雨事件降雨量变异性的增加将提高极端干旱事件发生的频率,可能对该地区的生态系统产生严重影响,加剧该地区的沙漠化发展方向。因此,加强气候变化对生态系统影响的研究,可为合理利用土地资源及调整土地管理方式提供理论依据。  相似文献   

12.
Debris flows and debris floods cause frequent geomorphic hazards, even in the mid‐mountains of Central Europe. In the Hrubý Jeseník Mountains (Eastern Sudetes, Czech Republic), strong anthropogenic interventions have created specific conditions for erosion, transport and accumulation of material released by debris flow/flood events. We present a detailed spatio‐temporal reconstruction of the hydro‐geomorphic process activity in two adjacent sub‐catchments using dendrogeomorphic methods applied to the steep, narrow channels. An analysis of 172 sampled trees [Picea Abies (L.) Karst.] revealed 14 torrential events since 1943 in the Klepá?ský stream sub‐catchment and 11 events since 1897 in the Keprnický stream sub‐catchment. Identical events were identified in 1965, 1991, 1997, 2002 and 2010. The event return periods were comparable with return periods from the foothills of the European Alps. A higher frequency of events in the first sub‐catchment may be caused by the presence of a deep‐seated landslide, steeper slopes and a higher susceptibility to shallow slope deformations. Different spatial patterns of events were presented using the Kernel Density analysis in ArcMap 10.1. Clusters of affected trees in the valley floor during the last decades may be due to increased erosion below the check dams and increased accumulation above. The presence of check dams and slope stabilization works since the 1960s has mitigated the processes in several gullies, but due to the current non‐interventional management, the risk of their damage is increasing, particularly when increased activity is observed in the adjacent unprotected gullies.  相似文献   

13.
This study explores the effects of hillslope mass failure on the sediment flux in the Waldemme drainage basin, Central Swiss Alps, over decadal time scales. This area is characterized by abundant landslides affecting principally flysch units and is therefore an important sediment source. The analysis concentrates on the Schimbrig landslide that potentially contributes up to 15% to the sediment budget of the Waldemme drainage basin. Volumetric changes are quantified using high-resolution elevation models that were extracted using digital photogrammetric techniques. Sediment discharge data were used to constrain the significance of the landslide for sediment flux in the channel network. The temporal extent of the photogrammetric analysis ranges from 1962 to 1998, including an earth slide event in 1994. The analyses reveal that during periods of low slip rates of the landslide, nearly all of the displaced sediments were eroded and supplied to the channel network. In contrast, during active periods, only a fraction of the displaced landslide mass was exported to the trunk stream. Interestingly, the 1994 earth slide event did not disturb the long-term sediment discharge pattern of the channel network, nor did it influence the sediment flux at a weekly scale. However, suspended sediment pulses correlate with higher-than-average precipitation events. This was especially the case in August 2005 when a storm event (> 100 years return period) triggered several debris flows and earth flows in the whole drainage basin and in the Schimbrig area. This storm did not result in a significant increase in the slip rates of the entire landslide's main body. It is therefore proposed that debris flows and earth flows perform the connectivity between hillslope processes (e.g. landsliding) and the trunk stream during and between phases of landslide activity in this particular setting.  相似文献   

14.
《Geomorphology》2003,49(1-2):71-88
Knowledge of long-term average rates of erosion is necessary if factors affecting sediment yields from catchments are to be understood. Without such information, it is not possible to assess the potential influence of extreme storms, and, therefore, to evaluate the relative importance of various components of a sediment budget. A study of the sediment budget for the Waipaoa catchment, North Island, New Zealand, included evaluation of long-term rates of landsliding for six landslide-prone land systems in the catchment. The number of landslides per unit area generated by each of several storms was counted on sequential aerial photographs and correlated with the magnitude of the corresponding storm. The resulting relationships were combined with magnitude–frequency relationships derived for storms from 70- to 100-year rainfall records in the area to estimate a long-term magnitude–frequency relationship for landsliding for each land system. The long-term average values of the areal landslide frequency (number of slides per unit area per unit time) were then calculated from these relationships. The volumes of a sample of landslide scars were measured in the field, and the proportion of slides that deliver sediment to channels was determined from aerial photographs. These measurements then allowed calculation of the long-term average rate of sediment production to streams from landslides for different land systems and types of vegetation. Results suggest that shallow landslides currently contribute about 15±5% of the suspended sediment load in the Waipaoa River above the Kanakanaia gauging station, and that 75% of the sediment production from the landslides occurs during storms with recurrence intervals of less than 27 years. Reforestation of 6.3% (93 km2) of the slide-prone lands in the catchment between 1990 and 1995 resulted in a calculated decrease in slide-derived sediment of 10%. Calculations suggest that reforestation of an additional 3% (66 km2) of the catchment in areas with the most sensitive combinations of land system and storm regime could decrease the total sediment inputs from landsliding by about 20%.  相似文献   

15.
《自然地理学》2013,34(4):374-386
The Western Ghats mountain chain of Kerala, India, is prone to landslides mainly caused by anthropogenic disturbances and very high rainfall amounts. Here, some initial observations on the apparent relationship among pore water pressure fluctuations, rainfall characteristics, and landslide initiation are presented based on monitoring in an experimental catchment in the upper Tikovil River basin. On June 21 and 22, 2007, continuous rain fell for over 10 hours with a total precipitation of 147 mm, causing three shallow landslides in the catchment. Measurements using piezometers in three hollows of the catchment indicate that the rain spell resulted in the development of high pore water pressure from the beginning of the storm that persisted through the time of occurrence of shallow landslides. The pore water pressure patterns in these monitored hollows are possible representatives of the pore water pressure pattern in the hollows where the landslides initiated. This similarity of response pattern enables such data to be used for the calibration and validation of physically based slope hydrology models coupled with slope stability models.  相似文献   

16.
This study is based on the data from Zizhou and Wangjiagou experimental stations on the Loess Plateau in the major sediment‐producing areas of the middle Yellow River drainage basin. It deals with characteristics of hyperconcentrated flows in the slope‐channel systems in the gullied hilly areas on the Loess Plateau. The results show that the formation of hyperconcentrated flows is closely related to the vertical differentiation of landforms. Based on data from 21 rainfall events in the period 1963–1970, event‐averaged suspended sediment concentration for hilltop, upper hillslope, lower hillslope and gully slope was calculated as 36 kg/m3, 89 kg/m3, 304 kg/m3 and 505 kg/m3, and the frequency of hyperconcentrated flows was 0.0, 0.17, 0.74 and 1.0, respectively. Thus, hyperconcentrated flows form on the lower part of hillslopes and on the gully slopes, and develope well in gully channels of various orders. There exists a sediment storing‐releasing mechanism, resulting from different behaviours of sediment transport by non‐hyperconcentrated and hyperconcentrated flows. When water flows are nonhyperconcentrated, the relatively coarse fractions of sediment from the slopes are deposited in the channel. When hyperconcentrated flows occur, the previously deposited coarse sediment may be eroded and released from the channel. A close relationship is found between rainstorms and the formation of hyperconcentrated flows, and some thresholds of rainfall and runoff for the occurrence of hyperconcentrated flows have been identified.  相似文献   

17.
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system's performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.  相似文献   

18.
乌鲁木齐1991-2010年降雨特征分析   总被引:4,自引:0,他引:4  
 利用1991—2010年5—9月乌鲁木齐市气象站降水量资料,分析了乌鲁木齐近20 a降雨特征。结果表明,逐小时降水量和降水频次呈现较为一致的日变化特征,均以20时以后至翌日11时左右为高值区,在下午16时达最低值;1 h降水频次最多的是量级≤1.0 mm的降水,其次是1.1 mm≤R1≤3.0 mm,但1.1 mm≤R1≤3.0 mm量级的降水贡献率最高,其次是R1≤1.0 mm。不同量级降水过程均有较为明显的年际差异,小雨过程发生的频次最多,其次为中雨、大雨和暴雨过程。前半夜为小雨、中雨和大雨过程最易发生时段,下午为暴雨过程最易发生时段。小雨、中雨、大雨和暴雨过程发生最多的时段分别为7月中旬、5月中旬、5月中下旬、5月上中旬与7月中旬及8月下旬。短时性降水(1~3 h)主要集中在前半夜,持续4~6 h和7~9 h降水多集中在前半夜到后半夜,持续10~12 h及以上的降水多发生在下午至后半夜。20 a来雨日年际变化不明显,后10 a和前10 a相比,暴雨日数有所增加,而其他量级及总雨日均减少。  相似文献   

19.
The highways circumnavigating Viti Levu play a pivotal role in Fiji's socioeconomic development, and are a crucial link to transport aid during disasters. Slope failures triggered by heavy rainfall and tropical cyclones have led to considerable damage and fatalities along Viti Levu's main roads in the past. Knowledge of slope instability mechanisms is key for the successful identification and management of slope failure hazards, however, there is a paucity of such information for Fiji's main roads. Severe Tropical Cyclone (STC) Winston was the strongest cyclone on record to make landfall in Fiji and affected the Fiji Islands from the early hours of 20 February until 3 am, 21 February, 2016. We present a field reconnaissance examining the characteristics and mechanisms of slope failures induced by STC Winston along a 35 km stretch of the northern part of the Viti Levu's ring road, “Kings Road”. Approximately 61 distinct shallow, small‐scale slope failures were identified most of which were of a complex type and included earth and debris slides (planar and rotational) with a minor flow component. The trigger for the slope failures was the ~258 mm of rainfall in 24 hours after 30‐days of antecedent rainfall totalling 482 mm. This caused rapid increases in porewater pressures, especially at the contact of residual soils and the underlying weathered basement rock. Evidence of recurring slips along Kings Road indicates that contemporary slope instability is likely caused by elevated porewater pressure during high intensity rainfall events in clay‐dominated soils.  相似文献   

20.
ABSTRACT

An attempt is made to explain the relationship of landslides to litho-tectonic and precipitation regimes. The possible influence of these factors on the dimensional pattern of landslides is also inferred. The Yamuna River valley, NW Himalaya, which traverses the Higher Himalaya (HH) and Lesser Himalaya (LH) rock mass, endures disastrous landslides and hence is taken as the case for study. To achieve the objectives, proxies like stream length gradient, topographic profile, steepness index, and ratio of valley floor width to valley height were used to infer a spatially varying tectonic regime, whereas rainfall data and Normalized Difference Vegetation Index were used to determine spatial differences in precipitation and vegetation variability, respectively. Dimensional patterns of landslides utilized the landslide area and volume. The higher reaches of the HH and lowest part of the LH show rockfall dominance associated with relatively high tectonic activity, whereas most of the debris slides coincide with regional thrusts. Total area and volume occupied by the landslides are ~1.5 ± 0.16 × 106 m2 and ~4.7 ± 1.2 × 106 m3, respectively. Dimensions of debris slides were found to be less influenced by the litho-tectonic and precipitation regimes, whereas the dimensions of rockfalls were found to be more sensitive to these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号