共查询到5条相似文献,搜索用时 0 毫秒
1.
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k?ε turbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock. 相似文献
2.
-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary with the KC number, the relative pile spacing, the number of piles and the pile location, and their relationships are presented in this paper. They can be used in Morison Equation and other equations to calculate directly the in-line wave forces and the transverse forces on each pile in array. 相似文献
3.
An investigation has been conducted to quantify the effect of waterway geometry on the form and magnitude of forces and moment experienced by a berthed ship due to a passing ship. By using the dynamic mesh technique and solving the unsteady RANS equations in conjunction with a RNG k?ε turbulence model, numerical simulation of the three-dimensional unsteady viscous flow around a passing ship and a berthed ship in different waterway geometries is conducted, and the hydrodynamic forces and moment acting on the berthed ship are calculated. The proposed method is verified by comparing the numerical results with existing empirical curves and a selection of results from model scale experiments. The calculated interaction forces and moment are presented for six different waterway geometries. The magnitude of the peak values and the form of the forces and moment on the berthed ship for different cases are investigated to assess the effect of the waterway geometry. The results of present study can provide certain guidance on safe maneuvering of a ship passing by a berthed ship. 相似文献
4.
Stability design of submarine pipelines is a very important procedure in submarine pipeline engineering design. The calculation of hydrodynamic forces caused by waves and currents acting on marine pipelines is an essential step in pipeline design for stability. The hydrodynamic forces-induced instabilities of submarine pipelines should be regarded as a wave/ current-pipeline-seabed interaction problem. This paper presents a review on hydrodynamic forces and stability research of submarine pipelines under waves and currents. The representative progress including the improved design method and guideline has been made for the marine pipelines engineering design through experimental investigations, numerical simulations and analytical models. Finally, further studies on this issue are suggested. 相似文献
5.
A Time-Domain Coupled Model for Nonlinear Wave Forces on A Fixed Box-Shaped Ship in A Harbor 总被引:1,自引:1,他引:1
A 2-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear wave forces on a fixed box-shaped ship in a harbor.The domain is divided into an inner domain and an outer domain.The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations.The other area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions.Along the interface boundaries between the inner domain and the outer domain,the volume flux is assumed to be continuous and the wave pressures are equal.Relevant physical experiment is conducted to validate the present model.It is shown that the numerical results agree with the experimental data.Compared with the coupled model with the flow in the inner domain governed by the Laplace equation,the present coupled model is more efficient and its solution procedure is more simple,which is particularly useful for the study on the effect of the nonlinear wave forces on a fixed box-shaped ship in a large harbor. 相似文献