首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The large and extensive transverse and barchane dunes of coastal South West Africa are strongly oriented under the influence of predominantly southerly winds. During periods of strong winds (40–50 miles/h) deposition occurs on the lee slope in three ways: (1) sand is blown over the crest of the dune and falls on the lee slope; (2) rapid deposition near the dune crest results in periodic slumps and slides down the lee slope; (3) eddy currents developed to the lee of the dune pick up sand from the surface downwind from the dune and transport it to the lee slope. The size and strength of the lee eddy is surprising. With winds in the 40–50 miles/h range frequent gusts lift fine sand from the downwind surface to a height of several feet. Less frequently sand is picked up from a low position on the lee slope and redeposited higher on the slope. The addition of material to the lee slope by the eddy is much less volumetrically than the contribution directly over the dune crest from the windward direction; however, with strong winds the removal and transportation of sand from the area downwind of the lee slope back to the lee slope appears to be important in the deflation of this surface. The width of the area influenced by the lee eddy during strong winds is about equal to the height of the dune. Observations in low dunes from 1 to 20 ft. high at Sapelo Island, Ga., U.S.A., confirm the presence of a well developed eddy to the lee of these dunes during strong and moderate winds (20–50 miles/h).  相似文献   

2.
Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3?C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4?C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to the greater amount of vapour absorbed on BSC compared to the dune sand under an identical meteorological condition. The feedback of water vapour condensation on BSC formation and its contribution to sustain the revegetation desert ecosystems was discussed.  相似文献   

3.
Twenty thin sections were studied from Cactus Hill, a ca. 20 ka stratified sand dune site in Virginia, USA, with a Clovis and hypothesized pre‐Clovis component. The high‐resolution soil micromorphology investigation focused on testing the integrity of Clovis and pre‐Clovis stratigraphy from one location where there is a high density of artifacts. Site formation processes were dominated by eolian (dune) sand formation. There was also ephemeral topsoil development and associated occupation, along with their penecontemporaneous disturbance and dispersal by scavenging animals (assumed) and localized down‐working by small invertebrate mesofauna (as evidenced by aggregates of fine phytolith‐rich humic soil and fine soil‐coated charcoal fragments). Partial erosion of these occupation soils (deflation?) was followed by successive sand burial. Post‐depositional processes affecting these sand‐buried occupations involved only small‐scale bioturbation and overprinting of clay lamellae, suggesting site stratigraphy has been stable for a long time. Soil micromorphological analysis has defined a difference between occupational units (pre‐Clovis and Clovis) and sterile units found between these units as well as above and below. In summary, according to this analysis, the site appears intact with only minor disturbances affecting the long‐term integrity of the stratigraphy. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
中国的沙漠和沙地部分或全部分布在季节冻土区, 研究沙丘的冻融过程是讨论季节冻结期间沙丘风蚀和形态演变规律的条件之一。以宁夏河东沙地流动沙丘和沙障固定沙丘为研究对象, 通过野外观测和室内控制实验, 分析了沙丘的冻融过程及其控制因素。结果显示: 沙丘的冻结期在11月中旬至3月上旬, 流动沙丘各地貌部位的冻结时长和冻结层厚度均存在较大差异(背风坡面>迎风坡面>丘顶), 背风坡脚的冻深最大。在季节冻结期内沙丘表层始终不发生冻结, 未冻层厚度的阈值约为10 cm且具有保护冻结层的作用, 流动沙丘迎风坡中在未冻层风蚀后, 地表冻结层融化再被风蚀, 如此循环过程造成其冻结层厚度远小于沙障固定沙丘的冻结层厚度。流动沙丘丘顶和背风坡面的冻结层厚度分别受短时(32 h)和较长历时(15 d)平均气温的影响。野外观测和室内控制实验均证明水分含量低于1.6%的沙丘沙不发生冻结, 冻结层硬度随含水率的增加呈幂函数递增(P<0.001), 随温度降低呈缓慢递增。  相似文献   

5.
Dune plants both modify the wind field around them and are impacted by various stress factors, among them sand erosion and sand deposition. As coastal dunes are being either stabilized or remobilized, in response to the changes in the rates of sand and dune movement, the vegetation cover and composition are expected to vary reflecting the differences in the sedimentary conditions. In this field study 315 quadrats of 100 m2, in which the perennial plant species were sampled, were analysed with respect to annual rates of sand erosion and deposition that were measured using erosion pins. A visual exploratory data analysis was introduced, based on selective filtering of samples according to their vegetation cover. This method, combined with established statistical tools, enabled the authors to uncover the inclination and indicative power of nine perennial dune plants to either a stabilized or a mobile environment, and to establish whether they are more prevalent in places undergoing sand erosion or sand burial. Two species were found to be clear indicators of a stabilized environment, Stipagrostis lanata , and Retama raetam . Of the species indicating a mobile environment, only one may be stated as a clear indicator of sand erosion: Silene succulenta , with Cyperus macrorrhizus coming close to being an indicator of a less mobile erosive environment. The best indicator species for sand burial was found to be, as expected, Ammophila arenaria , with Artemisia monosperma also indicating high rates of sand mobility especially when its relative cover is higher than 80%. Such information can be used to monitor natural processes of dune stabilization or reactivation, or to assess the success of a management plan that aims at stabilizing a dune, or at remobilizing it by removing vegetation.  相似文献   

6.
荒漠地区土壤初始状况对水平入渗的影响   总被引:7,自引:0,他引:7  
通过对沙坡头荒漠地区人工植被固沙区生物土壤结皮与固沙区外天然沙丘沙以及天然植被红砂、珍珠分布区砂粘土在不同初始含水率(θi)条件下土壤水平入渗过程的对比试验研究,探讨土壤质地以及θ i对水平入渗系数(λf)、剖面平均含水率(θm)状况的影响。生物土壤结皮对降水入渗量的截持作用大于沙丘沙,因而将显著地改变降水入渗过程中土壤水分的再分配格局,减少降水对深层土壤(沙丘沙)的有效补给。通过对土壤剖面平均含水率θm与距离湿润锋前缘0~5 cm、5~10 cm处体积含水率θfA、θfB比较,生物土壤结皮的θm、θfA和θfB分别约为沙丘沙的1.5倍。  相似文献   

7.
Barrier islands are exposed to the wind and wave action from storms, which often disturbs both the geomorphology and vegetation. Conservation and restoration efforts for these important habitats could be improved with knowledge of how native plants respond to storms. We analyzed 10 years of annual data of vegetation of St. George Island, Florida, in the Gulf of Mexico, to quantify how the plant community responds to major storms and to predict which dune species might be appropriate for restoration after storm damage across dune zones. This prediction was tested with six plant species that differed in their storm response—from highly negative (local extinction in response to storms) to highly positive (increased abundance in response to storms). We measured transplant survival and growth (plant height and number of shoots) over 2 years in a restoration experiment across three major dune zones. We found that different species can be useful for restoration purposes in different dune zones, depending on both short- and longer-term management strategies. Uniola paniculata is a particularly strong restoration candidate across all dune zones, whereas Muhlenbergia capillaris and Schizachyrium maritimum would be beneficial for restoration in the interdune area. Fimbristylis spp. and Sporobolus virginicus demonstrate the strongest potential for restoration in the interdune and backdune areas. Restoration of disturbed areas often involves the seeding or transplanting of species to stabilize the landscape and initiate the return of the original vegetation. We show that the performance of native species, in response to storms, especially in conjunction with information on plant life history, can be useful for identifying the best species to use for restoration.  相似文献   

8.
Soil degradation resulted from unreasonable land use and erosion has been a serious problem in the black soil region of northeastern China. This paper seeks to understand the relationships between topsoil properties and topography and land use for land management targeting at improving soil quality in this region. A total of 292 soil samples and 81 volumetric rings were taken from a typical small watershed of the region in June 2005 for examining total carbon (TC), total nitrogen (TN), soil texture (classified into gravel, sand, silt, and clay), and bulk density (ρ b), respectively. Spatial variability of these soil properties was evaluated with classical statistics and geostatistics methods. The results of classical statistics indicated that TC, TN, sand, silt, clay content, and ρ b were moderate variables while gravel had great variability. Soil properties were mainly correlated to slope position, elevation and land types. Geostatistical analyses showed that the spatial autocorrelation for TC, TN, and silt was weak, strong for clay and moderate for and ρ b sand, respectively. The spatial variations of soil properties are affected comprehensively by topographic factors, land use, erosion, and erosion control in this watershed. Past erosion, however, is the most important component to induce change of soil properties. In this small watershed, current soil and water conservation measures play an important role in controlling soil loss. But the restoration of soil properties was unsatisfactory. Comparing with untilled soil of this region, TC, TN, silt content are excessively low; whereas ρ b, sand and clay content are excessively high; gravel appears at most sampling locations. It is necessary for improving soil properties to protect forest and grassland and change cultivation system of farmlands.  相似文献   

9.
Aeolian dune dimensions and migration rates are analysed along the Ceará coast, north-east Brazil. Dunes that are currently mobile along the Ceará coast are composed of barchans and sand sheets. The results show that barchans maintain an equilibrium form, which can be characterized by values of dimensionless shape parameters H/W and W/L , where H is the dune height, W is the wing-to-wing width and L is the dune length. Dunes are highly mobile, with average migration rates of 17·5 m year−1 for barchans and 10 m year−1 for sand sheets. The calculated migration rates were found to depend strongly on dune dimensions for both barchans and sand sheets, i.e. the larger the dune is, the lower the migration rate will be. This size dependence was associated with the existence of a representative common transport rate along the dune fields, which induces a different dune migration rate dependent on dune size. Finally, from the observed dune evolution, an aggregated scale aeolian sediment transport was inferred. This bulk transport rate, of the order of 90–100 m3 m−1 year−1, is only valid for a timescale of years to decades, which is the timescale used in dune evolution analysis.  相似文献   

10.
Twenty-one surficial sand samples from the Altar Desert coastal and desert dune systems were analysed for rare earth elements (REE) content. This was done to observe the provenance signatures for four strategic dune localities near the Colorado River Delta, the El Pinacate dune fields, and the beaches of the north of the Gulf of California in the state of Sonora, Mexico. Our goals are to show which mechanisms (i.e., aeolian, marine) exert more influence on the composition of the Altar Desert dune sands. This study also shows the usefulness of REE spatial distribution to determine the relative mobility of the sand. Some sand samples from the dune systems in San Luis Río Colorado (SLRC), Golfo de Santa Clara (GSC), and Puerto Peñasco (PP) displayed dissimilar REE concentrations with respect to the rest of the sand samples from the same sites. These differences can be related to short aeolian transport distance in the sands with high REE concentrations and long aeolian transport distance in the sands with low REE concentrations. Besides, high REE concentration in the sands might be due to their closeness to the Colorado River Delta sediments and to recycled sands derived from granitic rocks. In contrast, all the sand samples from the El Pinacate (EP) site have similar REE concentration values, suggesting that the El Pinacate dune sands are influenced by more selective aeolian processes and less diverse heavy mineral content. The Altar Desert dune sands are derived from granitic sources eroded by the Colorado River. Our results also indicate that the Altar Desert dune sands are low in heavy mineral content (with the exception of Fe and Ti bearing minerals) and enriched in carbonates with phosphates (especially at the PP site) yielding poor correlations between REE and major element concentrations. The REE geographical distribution values in the Altar Desert dune sands indicate that light and heavy REE concentration values are related to aeolian transport, maturity of the sands, their low weathering rates, proximity of the source rocks, and the biogenic debris input from beach sands into the dune.  相似文献   

11.
The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.  相似文献   

12.
Surface albedo plays a crucial role in the energy balance of soils. The surface albedo and surface soil moisture of bare sand and biological soil crusts (BSCs) were concurrently observed on field plots of shifting sand dune and in revegetated desert ecosystems at Shapotou, northwestern China, to study relationships between surface albedo, solar elevation angle, and surface soil moisture. Results indicated that rainfall exerted a remarkable lowering effect on the variation of surface albedo by increasing surface soil moisture. Surface albedo was an exponential function of solar elevation angle, and the normalized surface albedo (solar elevation angle effect was removed) decreased exponentially with the increase of surface soil moisture. Sand surface had a higher albedo (0.266) than BSCs (0.226) when the surfaces were very dry. However, sand surface albedo became increasingly lower than that of BSCs when the surfaces were in wet conditions and when the soil moisture exceeded a critical value. The changes in soil surface albedo from sand dune to BSCs after revegetation in shallow soil profiles associated with the variation of the surface soil moisture can be seen as an indicator of the degree of sand dune stabilization when compared with the original shifting sand dune soil.  相似文献   

13.
This study aimed at quantifying the temporal and spatial variability in sand erosion and deposition over a coastal dune field in Israel. These were measured monthly over 2 years using 315 erosion pins over four transects that were placed perpendicular to the coastline. Vegetation cover was estimated based on aerial photographs and Landsat satellite images, whereas the relative height was based on a digital elevation model. These variables were calculated for the area upwind (south west) of the erosion pins, at various lengths, ranging from 15 to 400 m. Nine geomorphologic units were defined, five related to active units, and four to stabilized units. In active units at least 65% of the temporal variance in the annual absolute changes in sand level was explained by the index of Resultant Drift Potential, with most of the sand movement occurring during winter storms. Local rainfall had no apparent impact on sand mobility, due to the low coincidence of sand carrying winds and rainfall in Israel during the passage of frontal cyclones. As for the spatial variables, only a weak correlation was found between sand mobility with the distance from the coastline (R2 = 18%). Rather, sand erosion and deposition were influenced by vegetation cover and the relative height of an area of 100–200 m upwind. The values of Soil Adjusted Vegetation Index were significantly negatively correlated with annual absolute changes (R2 = 40%), whereas the relative height was significantly positively correlated (R2 = 36%). Applying a multiple regression model, 68% of the spatial variability in sand mobility was explained. The resulting map of sand activity clearly shows that at this stage of the stabilization process, most of the dunes are now disconnected, and movement of sand grains from the beach or between the dunes, is very limited. These methods can be applied into spatial and temporal models of sand mobility, thus assessing the impact of different management practices on coastal dunes.  相似文献   

14.
Parabolic dunes invade coastal strandplains and overlie prior blown dunes in southeast Queensland. These coastal dune landscapes were produced primarily by real changes in wind strength and frequency. Sand movement began in past glacial ages and in the most recent instance persisted into Holocene time. Four interglacial shores are identified with marine isotope stages 5, 7, 9 and 11, and allow estimation of the ages of the dune and beach sands, by correlation with the EPICA Dome C ice core, as follows: Triangle dune sand, n.d.; Garawongera dune sand, 65 ka; Woorim beach sand, 125 ka; Bribie beach sand, 245 ka; Bowarrady dune sand, 270 ka; Poyungan beach sand, 335 ka; Yankee Jack dune sand, 360 ka; Ungowa beach sand, 410 ka; Awinya dune sand, 430 – 486 ka; Cooloola dune sand, >486 ka.  相似文献   

15.
New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field’s history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ∼15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ∼13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ∼8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ∼5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ∼2000 and 1500 yr, followed by a brief (∼500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ∼700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (∼350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene.  相似文献   

16.
Rapid (10 s) measurements of sediment transport and wind speed on the stoss slope of a transverse dune indicate that the majority of sand transported is associated with fluctuations in wind speed with a periodicity of 5–20 min duration. Increases in the sediment transport rate towards the dune crest are associated with a small degree of flow acceleration. The increase in wind speed is sufficient, however, to greatly increase values of the intermittency index ( γ ), so that the duration of saltation is extended in crestal regions of the dune. The pattern of sediment transport on the stoss slope and, therefore, the locus of areas of erosion and deposition change with the regional wind speed. Erosion of the crest occurs during wind speed events just above transport threshold, whereas periods of higher magnitude winds result in deposition of sand upwind of the crest, thereby increasing dune height. Although short-term temporal and spatial relations between sand transport and wind speed on the stoss slope are well understood, it is not clear how these relations affect dune morphology over longer periods of time.  相似文献   

17.
N. LANCASTER 《Sedimentology》1985,32(4):581-593
The magnitudes of increases in wind velocity, or speed-up factors, have been measured on the windward flanks of transverse and linear dunes of varying height. On transverse dunes, velocity speed-up varied with dune shape and height. For linear dunes, speed-up factors varied principally with wind direction relative to the dune, with dune shape and dune height. The main effect of velocity speed-up on the windward flanks of dunes is to increase potential sand transport rates considerably in crestal areas. This is greatest for large dunes, with winds of moderate velocity blowing at a large angle to the dune. Changing ratios of base to crest sand-transport rates on transverse dunes tend to reduce dune steepness as overall wind velocities increase. On linear dunes, the tendency for crestal lowering is counteracted by deposition in this area when winds reverse in a bi-directional wind regime.  相似文献   

18.
我国东部草原露天矿区土壤瘠薄,草场退化严重,生态恢复难度大。针对露天矿排土场的特殊环境,研究丛枝菌根真菌与沙棘的共生状况以及菌根对沙棘根系发育的影响和对排土场土壤的改良效应。试验发现,接菌组(+M)沙棘的株高和冠幅比对照组处理(CK)分别提高了20%和21%,+M的根长和根体积分别为CK的1.46倍和1.97倍;+M中沙棘根际土中的易提取球囊霉素含量为3.22 mg/g,显著高于CK的2.16 mg/g;+M的磷酸酶活性是CK的1.76倍,速效磷含量也有相似变化规律。研究结果表明,利用微生物促进露天矿排土场的土壤改良及生态恢复具有较强的可行性,对矿区生态系统的恢复具有重要意义。   相似文献   

19.
Knowledge of the mechanisms of water infiltration in sand dunes and wadis is a key to understanding the hydrological conditions in arid and semiarid regions. To trace infiltration processes in sand dunes, an artificial rainfall infiltration experiment was conducted in a typical sand dune in Al Ain, United Arab Emirates. Thermal sensors and tensiometers were set at two sites, a rainfall test site and a natural site, at depths of 10, 30, 60, 120, and 200 cm, respectively. For a start, the variations in temperature between the sites were compared with tension as well as soil water at the same depths. Field observations showed that the temperature of the sand dunes at the rain experimental site was affected more strongly by air temperature than that at the natural site, which means that temperature distribution in the sand dune has a very close relation with the water content. Then, the scheme combined with temperature difference and moving average was tested in tracing the temperature variation with movement of the infiltration front. It was found that the vertical temperature correlated well with the water movement in the sand dune, from which the average velocity of infiltration was estimated at 3 cm/h.  相似文献   

20.
The combination of wind measurements and remotely sensed geomorphometry indices provides a valuable resource in the study of desert landforms, because arduous desert environments are difficult to access. In this research, we couple wind data and geomorphometry to separate and classify different sand dunes in Kashan Erg in central Iran. Additionally, the effect of sand-fixing projects on sand dune morphology was assessed using geomorphometry indices (roughness, curvature, surface area, dune spacing and dune height). Results showed that a Digital Elevation Model of the National Cartographic Center of Iran (NCC DEM) with 10-m resolution and accuracy of 54% could discriminate geomorphometry parameters better than the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 30-m resolution and Shuttle Radar Topography Mission (SRTM) data with 90-m resolution and 45.2 and 1.6% accuracy, respectively. Low classification of SRTM DEM was associated with too many non-value points found in the DEM. Accuracy assessment of comparison ground control points revealed that ASTER DEM (RMSE = 4.25) has higher accuracy than SRTM and NCC DEMs in this region. Study of curvature showed that transverse and linear sand dunes were formed in concave topography rather than convex. Reduced slopes in fixed sand dunes were established due to wind erosion control projects. Measurements of dune height and spacing show that there is significant correlation in compound dunes (R 2 = 0.546), linear dunes (R 2 = 0.228) and fixed dunes (R 2 = 0.129). In general, the height of dunes in Kashan Erg increases from the margin of the field to the center of the field with a maximum height of 120 m in star dunes. Analysis of wind data showed that sand drift potential is in low-medium class in Kashan Erg. Linear sand dunes in Kashan Erg show that they are following a global trend in forming of these. Finally, established of geomorphometry method in dune classification will help researchers to identify priority of land management and performance assessment of sand dunes fixing projects in arid arduous environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号