首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
梅雨锋上暴雨云团活动的个例分析   总被引:1,自引:0,他引:1  
在夏季青藏高原上低层没有辐合带和对流系统活动时,在高原东坡下午有对流云发展。在有利的地形条件下,这类对流云团可发展成中-a 系统,东移进入梅雨锋云带。在长江中游复杂地形区域中-a 尺度对流云团只具有较复杂的中尺度对流组织和较复杂的消、长更替等过程。这类中尺度云团有时停滞,有时发生跳跃性迁移。当梅雨锋云带上对流降水逐渐活跃和加强时,在对流层下部有冷带和温度锋区出现,并且当有一个强的中-a 尺度暴雨云团发展起来之后,可以在梅雨锋上形成3~4个中-a 尺度暴雨云团。同时在梅雨锋南侧低层不稳定区的中-α尺度对流云团移入梅雨锋云带时,容易引起强的中-α尺度云团发展。  相似文献   

2.
西北地区东部一次持续性暴雨的成因分析   总被引:6,自引:2,他引:4  
分析了西北地区东部一次副高西北侧西南气流型的暴雨过程.结果表明,这次暴雨是中α和中β尺度对流云团引发的强对流性降水.青藏高原云团移到川西北后出现更新,老云团消亡时在其前方有新云团生成.冷锋云带到达甘肃河东地区后,其前缘也触发对流云团,受四川盆地强水汽输送带影响,新云团一般生成在水汽输送带左侧.强雨区产生在冷锋云带与对流云团结合时,对流云团的发展是水汽输送及天气系统辐合和有利的局地环境条件如双层对流不稳定加地形等多因子综合作用的结果.区域性暴雨出现在冷锋云带与对流云团叠加区,这里降水效率高.强雨区大多位于对流云团的西北或东北部与冷锋云带结合处.  相似文献   

3.
夏季北京地区强地形雨中尺度结构分析   总被引:22,自引:8,他引:14  
矫梅燕  毕宝贵 《气象》2005,31(6):9-14
利用卫星、雷达资料,分析了2002年6月24日北京地区大暴雨的降水云团演变特征,结果表明:中α尺度对流系统减弱过程中经历了中β尺度云团的发展过程,中β尺度对流云团是北京西部局地暴雨的影响系统;在观测分析的基础上进行了数值模拟分析:低层东风气流向西移动遏太行山东坡辐合抬升,黄土高原低层偏西风向东移动,受太行山脉强迫倾斜上升,与太行山东坡的地形抬升叠加,在太行山及其东坡产生强烈的上升运动,并形成垂直次级环流圈,同时,低层的偏南气流在燕山南坡上升,而冷空气偏北气流在燕山南坡半山腰下沉,该次级环流圈是北京西部山区强降水产生和维持的主要物理机制。  相似文献   

4.
武威  顾佳佳 《气象科学》2021,41(1):108-118
利用常规观测资料、ECMWF ERA-Interim 0.125°×0.125°分析资料、FY-2G卫星云图和多普勒天气雷达资料等,对2017年8月18-19日漯河极端降水的中尺度特征及降水成因进行分析。结果表明:(1)本次过程在200 hPa高空分流区、500 hPa高空槽以及副热带高压、低层急流切变、地面低压倒槽等天气尺度系统合理配置及其相互作用下发生。(2)探空显示漯河上空具有较高的对流潜势,有利于中尺度雨团初生和发展。低层饱和、厚暖云层、弱风切变有利于暴雨云团产生,高CAPE值、高比湿和高降水效率是极端雨团的重要原因。(3)中尺度对流云团一个随槽前西南气流东移北上,一个随低层切变线南压,相向合并发展为MβCS,有利于暴雨云团增强。不同于以往本地区的云团"同向合并",持续的列车效应以及低质心高效率的中尺度对流单体后向传播导致强回波长时间维持,极端降水发展。(4)地面中尺度辐合线和强辐合中心对强降水起到动力触发作用,有利于对流发展。冷池出流与交汇北上的东南风和偏东风相互作用,导致水平温度梯度增大形成和冷池前侧锋生加强,一方面致使雨团组织化发展和单体后向传播,另一方面也在降水区下游触发新生雨团,冷池持续增强。(5)本次过程整层风场较弱,且低层气流传播速度大于引导气流速度,平移与传播方向的反向夹角大,导致两者矢量和大幅度偏离了引导气流方向,同时产生的减速效应导致暴雨中尺度系统移动缓慢,导致极端降水形成。  相似文献   

5.
为了解2015年8月22日发生在北京东部的一次对流云团的生消演变过程及微物理特征,使用耦合了CAMS云微物理方案的WRF中尺度云分辨模式对此次过程进行数值模拟。由于研究的对流云团尺度较小,对时空分辨率要求较高,把LAPS(Local Analysis and Prediction System)局地分析和预报系统同化多源观测资料后输出的高分辨率的中尺度分析场作为模式的初始场。将模拟结果与FY-2F卫星、北京SA波段多普勒天气雷达、地面雨量站等观测资料进行对比分析。同时,研究了对流云团中的微物理含量分布,深入分析此次过程的降水机制。结果表明:模式能够较好地模拟出对流云团在生成、发展、成熟和消散的四个不同阶段的演变规律,整个对流云系的发展持续4 h左右,对北京有直接影响的对流单体的生命时长在1 h左右;模拟的自然云云带分布和演变规律、小尺度云团的尺度、位置、形状和垂直结构都与观测资料有较好的一致性;模式也能模拟出降水落区和量级及强中心的位置。此次对流云过程主要为冷暖混合云系结构,云中过冷水丰沛,降水机制以冷云降水为主,暖区供水云对降水的发展有促进作用,霰融化为雨滴是主要的成雨过程。  相似文献   

6.
2007年7月18日济南大暴雨的β中尺度分析   总被引:9,自引:2,他引:7  
利用1°×1°的NCEP再分析资料、地面逐小时的观测资料和红外云图,对2007年7月18日的济南大暴雨过程进行了详细的α中尺度分析,揭示了地面β中尺度气旋新生发展的一种物理机制,并重点分析了多尺度的积云并合过程对此次强降水形成的重要作用。研究结果表明:在一个已经发展成热的MαCS的左后侧出现的下沉冷出流在低层向西南方向扩散,与午后不断加强的西南暖湿气流共同作用增强了地面的斜压性,从而使地面辐合线上的气旋性扰动加强,并迅速新生发展出β中尺度气旋。在此次强降水过程中共经历了从γ中尺度对流单体到β中尺度对流云团,再到α中尺度对流云团,最后形成中尺度对流复合系统的4个多尺度积云并合过程,而地面β可尺度气旋在每一个阶段都扮演了非常重要的角色,它们既是β中尺度对流云团的组织者,同时也是α中尺度对流云团的组成者,α中尺度对流云团往往都由一个以上的β中尺度气旋组织而成,当β中尺度气旋出现遭遇、合并之时,对流云团和降水得以强烈发展。在济南强降水发生前的1个多小时内,其西南方边界层内不断出现β中尺度超低空西南急流,它促使这一区域内不断产生回波单体并在向东北方向移动的过程中迅速发展成强回波带,当济南北面的强回波南移与这一强回波带并合后快速发展产生强降水。  相似文献   

7.
以LAPS局地分析资料为主,综合利用卫星云图、地面自动站资料和NCEP提供的全球分析资料,对2011年6月9—10日湖南一次特大暴雨过程进行了分析,结果表明:降水主要发生在对流云团中亮温TBB-70℃的区域的偏西一侧,在TBB-80℃的区域内降水最强;锋前暖区中的对流云团,在中低层是以条件不稳定机制为主的垂直上升运动,而在中高层,是以条件对称不稳定机制为主的垂直上升运动。中尺度对流系统在不断东移南压的过程中,受高层的辐散性流场的抽吸作用和低层的对流不稳定而发展加强。强气旋性切变和正涡度平流触发中尺度气旋发生、发展,β中尺度涡旋是此次特大暴雨过程的直接影响系统。对整层的高度场和流场进行滤波分析发现,此次暴雨过程中的中尺度气旋活跃,强降水雨团与中尺度低层辐合、高层辐散中心基本重合。利用高(低)层中尺度辐散(合)中心位置确定暴雨中心有一定的预报指导作用。  相似文献   

8.
渤海西海岸带大暴雨中尺度云团空间结构分析   总被引:2,自引:0,他引:2  
利用FY-2E和CloudSat卫星、多普勒雷达、T639L60物理量、雷电及实测降水等资料,分析了2010年7月19日、8月4日和21日渤海西海岸大暴雨天气的中尺度云团时空分布.结果表明,从红外云图、水汽云图与6h雨量叠加可明显看出有多个β、γ中尺度云团,并以50~60 km·h-1的速度沿副热带高压588 dagpm线西北侧的引导气流方向移动,强降水时段TBB温度值为-96~-115℃,涡旋状云系对应低层中尺度低涡,带状云系对应低层中尺度切变线.同步雷达反演显示,β中尺度对流云团强、弱交替变化周期为3~6h,天津地区减弱的雨团移到河北海岸带,在有利的低层风场辐合区产生了新的暴雨云团;该暴雨云团减弱后,对下游锦州上空的中尺度雨团发展是一个快速波动传输过程,且与多单体风暴的传播机理相似.闪电频数与强降水时段的峰值较一致,中小尺度雨团合并和低层辐合是造成短时强降水的原因之一.  相似文献   

9.
用滤波方法进行MαCS云团形态差异的个例分析   总被引:2,自引:1,他引:1  
覃丹宇 《大气科学》2010,34(1):154-162
利用GMS-5卫星资料, 研究了2002年6月27~28日一次强降雨过程中尺度暴雨云团的演变特征。分析表明, 整个降雨过程分两个阶段, 第一阶段, 一个近圆形中尺度对流云团从西北向东南移动, 主要造成河南省强降雨; 第二阶段, 南移的中尺度对流云团到达长江流域, 重新发展并形成东西向宽带状α中尺度对流系统 (Meso-α-scale Convective System, 简称MαCS) 云团, 造成长江中下游暴雨。为研究这次暴雨过程中尺度对流云团的组织方式演变和结构特征, 使用滤波方法对NCAR/NCEP 1°×1°再分析资料进行尺度分离, 获得中尺度扰动场, 结果表明: (1) 利用改进的Shuman-Shapiro滤波方法, 可以有效地分离出中尺度扰动。对于近圆形的MCS, 低层高度场低中心和流场辐合中心重合, 位于云顶亮温 (Black Body Temperature, 简称TBB) ≤-52℃冷云盖的西侧边缘, 这里也是新生对流活跃的地方, 而高层高度场高中心和流场辐散中心分离, 但都位于冷云盖区域。对于宽带状MαCS, 低层高度场低中心和流场辐合中心也基本重合, 位于TBB≤-52℃冷云盖的北侧边缘, 高层高度场高中心与低层低中心相对应, 但流场在冷云盖中没有表现出单一中心, 却表现为一致辐散气流。 (2) 滤波结果显示, 不论是前期的近圆形中尺度对流云团, 还是随后发展起来的宽带状MαCS, 二者都具有低空辐合高空辐散扰动结构, 只是扰动的强度后者大于前者。 (3) 这次过程的中尺度对流云团表现出的形态演变, 由近圆形变成宽带状, 是因为其组织差异造成的。两者的组织方式完全不同, 前者主要是低层中尺度气旋, 而后者主要是低层的中尺度切变线。  相似文献   

10.
利用常规观测资料、地面加密自动站资料、FY-2D和FY-2E双星TBB资料、多普勒天气雷达资料、MODIS卫星云图资料以及NCEP/NCAR FNL再分析资料,对2012年6月4日发生在新疆巴音郭楞蒙古自治州境内的一次罕见短时暴雨天气的MCS特征进行分析。结果表明:(1)此次暴雨过程中,出现了2条明显的中尺度风场辐合线,且风场辐合线的移动与MCS移动方向较为对应;(2)此次暴雨主要是由多个中-β及中-γ尺度对流云团在移动过程中逐渐合并加强造成,暴雨主要发生在TBB等值线密集区,TBB≤-52℃区域的形成、发展、消失与暴雨的发生、发展、结束时段对应较好;(3)MCS云团呈现高层辐散、低层辐合的垂直结构,降水区域出现在"人"型回波的尾部,整个降水过程中MCS云团回波强度50 d BZ。卫星、雷达资料对MCS的发生、发展、移动、消亡等过程有较好的监测意义;(4)暴雨发生前,巴州南部地区不断有水汽输送,在天山山区南侧受地形阻挡作用,将水汽和能量不断抬升至高空,有利于MCS的发展,为暴雨的发生提供了水汽和动力条件。  相似文献   

11.
韩桂荣  何金海  梅伟 《气象科学》2008,28(6):649-654
本文对2003年7月4日-5日江淮梅雨期间的一次特大暴雨过程进行了多尺度的详细分析.环流背景、中尺度对流云团和水汽条件分析表明,这次特大暴雨是在典型梅雨的有利环境背景形势下,由梅雨锋上的中尺度对流系统造成的,地面低压、低层切变线及西南低空急流与这次特大暴雨过程有着密切的关系.强降水中心与中尺度对流云团的关系十分密切,中β尺度云团的生成合并增强,和其中中γ降水系统的存在,导致了降水强度的局地性差异.江淮流域主要表现为经向水汽通量的辐合区,强水汽通量舌与低层高θse的舌区一致,暴雨过程中水汽的快速集中主要是通过风场散度项造成的,局地风场的辐合在水汽快速集中起主要作用.低层充沛的水汽则通过气旋性涡度柱中的强上升气流输送到对流层的中高层.  相似文献   

12.
“0811”暴雨过程中MCC与一般暴雨云团的对比分析   总被引:3,自引:0,他引:3  
利用T639 1°×1°分析场、FY-2红外云图、红外辐射亮温(TBB)、闪电定位和气柱水汽总量等资料,对2010年8月11日发生在山西南部暴雨过程(即"0811"暴雨过程)中的中尺度对流复合体(MCC)和其北部的一般暴雨云团进行了对比分析,结果表明,(1)山西北部暴雨带主要由6个β中尺度对流云团生成、发展及合并造成;山西南部区域性暴雨则由MCC的生成、发展、东移所引发。(2)山西北部的暴雨云团在850hPa暖切变线南部生成和发展,并在地面切变线附近合并;山西南部的MCC由3个β中尺度对流云团发生、发展及合并形成,该对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随西太平洋副热带高压的南退而南压。(3)在西太平洋副热带高压西进北抬的背景下,同一次暴雨过程中,MCC发生在5 880gpm边缘弱的斜压环境中,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5 840gpm边缘较强的斜压环境中,高层则出现在急流入口区的右侧。(4)MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌及暖温结构更深厚。(5)山西南部MCC影响区和5 880gpm线边缘为负地闪覆盖区,正地闪主要出现在其北部一般暴雨云团影响区和5 840gpm线附近。与MCC相比,一般暴雨云团影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。(6)山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋南侧气柱水汽总量的大值区。气柱水汽总量对"0811"暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

13.
梅雨锋暴雨中尺度对流系统结构模型的双多普勒雷达研究   总被引:17,自引:7,他引:17  
使用双多普勒雷达三维风场反演技术对2003年6月26-27日合肥和马鞍山多普勒雷达探测到的江淮梅雨锋大暴雨资料进行了三维风场反演,对其中β和中γ尺度三维动力结构进行了研究.结果表明,中β尺度对流系统(MβCS)及其上的中γ尺度对流云团是此次暴雨的主要降水系统.中低层的中β尺度辐合线对此次暴雨的触发、发展、维持具有重要作用,随着辐合带的逐渐减弱,强降水也逐渐减弱.中尺度对流系统低层的正涡度大值区与辐合中心有较好的对应关系,并且对应地面的强降水区.文中还给出了此次暴雨的三维动力结构模型.  相似文献   

14.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   

15.
中-β尺度云团造成不同降水强度的对比分析   总被引:4,自引:0,他引:4  
李玉兰  杜长萱 《大气科学》1994,18(4):492-497
本文对发生、发展在长江中游地区两个中-β尺度云团引起不同强度的降水,进行了对比分析,弄清它们之间的异同,进一步探讨了中-β尺度对流云团产生强降水的条件,从而为难以预报小范围的暴雨提供一些物理依据。  相似文献   

16.
暴雨过程中对流云合并现象的观测与分析   总被引:1,自引:0,他引:1  
黄勇  覃丹宇  邱学兴 《大气科学》2012,36(6):1135-1149
利用静止/极轨气象卫星、新一代多普勒天气雷达、地面观测和NCEP再分析资料, 对2008年7月22日淮河流域一次暴雨过程中的对流云合并现象进行观测分析。综合观测显示, 这是一次在低层显著气压梯度作用下发生的对流云合并现象, 是一次多尺度、多合并方式的典型过程, 不仅有对流单体之间的合并, 还存在着对流云核(强中心)之间的合并。根据合并的进程, 可以划分为三个主要阶段:单体发展、云桥形成以及系统合并。卫星云图显示, 对流云核合并后云团结构更加紧密、边缘更加光滑;在雷达回波上, 合并后回波顶高和垂直积分液态含水量有显著的增加。对流云核合并完成后, 区域内最高云顶开始回落, 垂直积分液态含水量的最大值开始减少, 并在地面产生强降水。另外, 对流单体之间的合并不仅导致地面降水范围有所扩大, 而且还使降水持续了较长的时间。对合并过程可能存在的机制分析表明, 存在着三个方面的动力因素:(1)大尺度环境场中垂直运动存在的水平不均匀性, 是促成对流云团合并的环境因素。(2)对流系统间存在的低压中心及其引起的显著地面气压梯度, 是对流系统间合并的主要原因。(3)一个云核的下沉气流加强了另一个云核的上升气流, 是对流云核合并的动力学原因。  相似文献   

17.
利用常规观测、地面加密自动站降水资料以及FY3B极轨卫星资料,对2014年5月18日广西一次暴雨过程中暴雨云团的微波湿度计特征进行分析,得出以下结论:(1)广西中东部处受高空槽前西南气流影响,中低层水汽条件较好,低层有切变辐合,为中尺度对流系统的发生、发展提供了有利背景。(2)250m分辨率可见光通道云图上对流发展旺盛的云团有明显不均匀纹理结构,其中镶嵌着多个圆形的暗影,预示着云中伴有强降雨、雷暴大风等灾害性天气。(3)微波湿度计资料反映出暴雨云团从低层到中高层都有较高的水汽含量,50mm以上的强降雨区主要位于3个亮温低值中心的过渡区域,即对流云团合并处。高低层通道亮温差能反映云团对流的强弱程度,强降雨发生在微波亮温差的正值区,通道3与通道5的亮温差对6h强降雨落区有较好的指示意义。  相似文献   

18.
中尺度对流复合云团是一类重要的中尺度对流天气系统。本文用增强红外云图及逐时降水资料统计分析了西北区东部副高西北侧云带中22个对流云团及其对应的降水趋势。并对云团进行了分类,发现不同类型的对流云团其降水趋势也不相同。得到了一些对短时降水预报有用的结果。本文采用北京卫星气象中心1984年7—9  相似文献   

19.
中—β尺度云团造成不同降水强度的水对比分析   总被引:1,自引:0,他引:1  
李玉兰  杜长萱 《大气科学》1994,18(4):492-497
本文对发生,发展在长江中游地区两个中-β尺度云团引起不同强度的降水,进行了对比分析,弄清它们之间的异同,进一步探讨了中-β尺度对流云团产生强降水的条件,从而为难以预报小范围的暴雨提供一些物理依据。  相似文献   

20.
利用常规观测资料、自动站加密观测资料、NCEP1°×1°再分析资料、卫星FY-2E的TBB资料、多普勒天气雷达观测资料等,对2011年7月25日山东乳山强降水进行分析研究,结果表明:(1)这次强降水主要影响系统是高空槽、低层暖式切变线和副高边缘的低空急流。强降水产生在850h Pa和925h Pa切变线附近,低层850h Pa以下有较强的西南气流向北输送大量的水汽,强降水的水汽来源于低层近海面的水汽输送和辐合。(2)强降水产生在高温高湿区,强降水期间,低层有明显的暖平流,高层有明显的冷平流,低层暖平流增强或高层冷平流增强时,降水强度也明显增强。(3)强降水期间,乳山的特殊海岸线地形抬升作用产生的上升运动与中高层入侵的干冷空气(伴有下沉运动)相遇,从而触发对流不稳定能量释放,降水强度增大,产生强降水。(4)乳山出现短时强降水主要是由中-β尺度对流云团造成的,此次强降水的TBB在-63~-52℃,云团发展迅速,高度较高,在云团发展阶段,其反应的云顶温度比实际的云顶温度偏高。(5)风暴低层逆风区和中-γ尺度气旋性涡旋,及风暴顶的强烈辐散,利于回波发展与维持,同时使高值区维持在风暴中层及以下高度,在环境因子有利的情况下产生降水效率较高的强降水风暴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号