首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 328 毫秒
1.
作为青藏高原南东向“挤出逃逸”的重要通道,青藏高原东缘中南部具有大型走滑断裂广泛发育和地震活动强烈而频繁的特征.本文使用线性球面块体模型理论,在前人活动地块研究的基础上吸收新近研究成果,建立研究区三维块体几何模型,使用1999—2007年的GPS数据反演得到青藏高原东缘中南部主要活动断裂滑动速率.使用反演得到的滑动速率和最优断层闭锁深度估算了川滇菱形块体主要边界和其内部断裂的地震矩积累,并利用历史强震目录估算了地震矩释放,在比较两者差异的基础上得到了研究区地震矩亏损(未释放的地震矩)较大的断层和断层段,该结果可以作为研究区强震中长期危险性研究的参考.  相似文献   

2.
蔡瑶瑶  张军龙 《地震》2018,38(3):58-65
东昆仑断裂带是青藏高原东北部一条重要的活动断裂, 构成了巴颜喀拉块体的北边界。 根据阿尼玛卿山两侧滑动速率和历史地震的差异, 将断裂带分为东西两个部分。 滑动速率由西向东递减, 近百年的历史地震产生的破裂基本覆盖了西部和东部的一部分。 随着巴颜喀拉块体周缘强震的持续发生, 作为块体北边界的东昆仑断裂带的地震空区及地震潜势研究变得更加重要。 近些年通过对东昆仑断裂带不同段的研究得到了较多的滑动速率和古地震序列数据, 为评价断裂带未来百年地震危险性提供了有利条件。 利用NB模型中的对数正态分布方法, 得到了东昆仑断裂带在未来100 a的发震概率, 研究表明, 东部(玛曲段)发震概率相对较高, 需要进一步关注。  相似文献   

3.
文中收集了1999—2015年天山地震带及其周边地区的GNSS数据,计算得到了速度场结果,并利用弹性块体模型计算了研究区域内各块体的闭锁深度和主要断层的滑动速率。研究结果表明:南天山断裂带西段的迈丹断裂的缩短速率处于高值状态,达(-6.3±1.9) mm/a,高于南天山东段;北天山断裂带西段的缩短速率同样高于东段。利用主要断裂带的滑动速率计算出各地震带的地震矩积累变化及1900年以来的地震矩释放变化量,以分析地震矩亏损分布,结果显示北天山山前断裂、迈丹断裂、额尔齐斯断裂带北段和喀什河断裂西段存在较大的地震矩亏损,具有孕育7级以上地震的潜能,而北轮台断裂、柯坪断裂带中段则呈现地震矩盈余状态,在未来的一段时间内不具备发生强震的可能。  相似文献   

4.
本文搜集、整理1998—2013年境内外天山及周边地区(包括中国新疆、哈萨克斯坦、吉尔吉斯斯坦等)500余个GPS观测点数据,采用GAMIT/GLOBK软件对其进行解算和平差计算,并利用了弹性块体模型计算区域块体边界断层闭锁深度、块体运动参数和主要活动断层的滑动速率.研究结果表明,东、西昆仑地震带闭锁深度最大(19km),其次为南天山地区,闭锁深度达到17km,闭锁深度最小的为哈萨克斯坦(13km);各块体相对欧亚板块作顺(逆)时针旋转,旋转速率最大(-0.7208±0.0034°/Ma)为塔里木块体,其围绕欧拉极(38.295±0.019°N,95.078±0.077°E)顺时针方向转动,旋转速率最小为天山东段(0.108±0.1210°/Ma),而天山东、西两段无论是在旋转速率上还是在旋转方向上都有显著的区别.西昆仑断裂带的滑动速率(10.2±2.8mm·a-1)最大,南天山西段滑动速率为9.5±1.8mm·a-1,其东段为3.9±1.1mm·a-1;而北天山东段滑动速率(4.7±1.1mm·a-1)高于北天山西段(3.7±0.9mm·a-1);塔里木盆地南缘的阿尔金断裂带平均滑动速率为7.6±1.4mm·a-1,其结果与阿勒泰断裂带滑动速率(7.6±1.6mm·a-1)基本相当;天山断裂带运动方式主要以挤压为主,而阿尔金、昆仑、阿尔泰以及哈萨克斯坦断裂带均是以走滑运动方式为主,除阿勒泰断裂带走滑方式为右旋以外,其余几个断裂带均为左旋运动.最后,利用主要断裂带的滑动速率计算出各地震带的地震矩变化率以及1900年以来地震矩累计变化量,其结果与利用地震目录计算所得到的地震矩进行比较,判定出各地震带上地震矩均衡分布状态,研究结果显示阿尔金、西昆仑、东昆仑和北天山东段断裂带存在较大的地震矩亏损,均具有发生7级以上地震的可能性,南天山东段和哈萨克斯坦断裂带地震矩亏损相对较小,具有孕育6~7级地震的潜能,而天山西段、阿勒泰地震矩呈现出盈余状态,不具在1~3年内有发生强震的可能.  相似文献   

5.
基于活动块体的基本概念,综合对研究区内活动断裂带空间展布、地震活动性等资料的分析将巴颜喀拉块体东部及邻区划分为巴颜喀拉块体(I)、华南块体(Ⅱ)、川滇块体(Ⅲ)和西秦岭块体(IV)等4个一级块体.利用GPS形变场、地球物理场等资料结合F检验法,将巴颜喀拉块体划分为阿坝(I1)、马尔康(I2)和龙门山(I3)3个次级块体,将西秦岭块体划分为岷县(IV1)和礼县(IV2) 2个次级块体.利用分布在各个块体内部的GPS测站,计算各活动块体及块体边界断裂带的运动变形特征.结果表明:各活动块体的整体运动包括平移和旋转运动;东昆仑断裂带、甘孜—玉树断裂带和鲜水河断裂带的滑动速率明显高于龙门山断裂带的滑动速率;巴颜喀拉块体东部走向北西或北西西的边界断裂表现出左旋拉张的特性;走向北东的边界断裂带,除成县—太白断裂带外,均表现出右旋走滑兼挤压的活动特征.巴颜喀拉块体的东向运动存在自西向东的速度衰减,衰减主要被龙日坝断裂带和岷江断裂带分解吸收,其中龙日坝断裂带的水平右旋分解非常明显,约为~4.8±1.6 mm/a,岷江断裂带的水平分解较弱.龙门山断裂带被马尔康、龙门山和岷县等次级块体分成南、中、北三段,龙门山断裂带中段上的主压应变率要明显小于龙门山断裂带南段上的应变率,其北西侧变形幅度从远离断裂带较大到靠近断裂带逐渐减小,表明其在震前已经积累了较高的应变能,有利于发生破裂滑动.汶川地震后,地表破裂带和余震分布揭示的断裂带运动性质自南西向北东由以逆冲运动为主,逐渐转为逆冲兼走滑的特征可能与龙门山断裂带中段所受主压应力方向自南西向北东的变化有关.马尔康、龙门山和岷县3个次级块体与华南块体之间较低的相对运动速度以及龙门山断裂带低应变率、强闭锁的特征都决定了汶川地震前龙门山断裂带低滑动速率的运动特征.  相似文献   

6.
利用GPS速度场资料和块体模型分别建立巴颜喀拉块体的两种块体模型并反演其滑动速率,模型Ⅰ中巴颜喀拉块体包括东昆仑断裂带西段地区,模型Ⅱ中则不包括该地区。GPS反演结果显示,模型Ⅱ较模型Ⅰ合理,这一合理性包括了模型Ⅱ中阿尔金断裂带西南尾端较大的拉张速率与较小的走滑速率;模型Ⅱ中东昆仑断裂带中段滑动速率约为8~9mm/a,与10mm/a的研究结果更为接近;模型Ⅰ中东昆仑断裂带西段具有较大的走滑速率与挤压速率,也与现今地震活动与震源机制相矛盾;但模型Ⅱ中巴颜喀拉块体在玛尔盖茶卡断裂带滑动速率较大,认为可能与风火山断裂带处的滑动速率较小有关,因此进一步舍去该断裂带,建立新的模型Ⅲ,所得结果与各断裂研究结果较为近似。巴颜喀拉块体南边界风火山断裂带目前活动较弱,下地壳软弱物质可能已经进入巴颜喀拉块体部分地区;风火山断裂带向东经玉树—甘孜—鲜水河断裂带,在下地壳流动与重力滑塌作用下左旋速率逐渐增大。  相似文献   

7.
利用1999—2007期和2009—2013期中国大陆GPS速度场数据,采用DEFNODE负位错反演程序估算了川滇菱形块体东边界——鲜水河—安宁河—则木河—小江断裂带在汶川地震前后的断层闭锁程度和滑动亏损空间分布动态变化特征,讨论了汶川地震对该断裂系统的影响范围和程度,并结合b值空间分布和地震破裂时-空结果分析了断裂系统的强震危险段.结果表明,汶川地震前鲜水河断裂最南端为完全闭锁(闭锁深度25km),中南段地表以下10~15km深度为强闭锁状态,中北段基本处于蠕滑状态;安宁河断裂最南端闭锁很弱,其余位置闭锁深度为10~15km;则木河断裂除最南端闭锁较弱以外,其余位置基本为完全闭锁;小江断裂在巧家以南、东川以南、宜良附近、华宁以北等四处位置闭锁较弱,其余位置为强闭锁.10年尺度的GPS速度场反演所得断层闭锁程度所指示的强震危险段,主要为鲜水河断裂道孚—八美段、安宁河断裂中段、则木河断裂中北段、小江断裂北段东川附近、小江断裂南段华宁—建水段,该结果与地质尺度的断层地震空区和30年尺度的b值空间分布所指示的危险段落具有一致性.汶川地震后断裂带远、近场速度分布和块体运动状态发生变化,这种区域地壳运动调整使得负位错模型反演得到的断裂带闭锁情况发生一定变化.汶川地震前后川滇菱形块体东边界平行断层滑动亏损速率均为左旋走滑亏损,且在安宁河断裂北端、则木河断裂中北段滑动亏损速率最大;除鲜水河断裂中南段与最南端和小江断裂东川附近以外,其余断裂震后滑动亏损速率均有所增加.垂直断层滑动亏损速率既有拉张亏损也有挤压亏损,且鲜水河断裂最南端由震前挤压转变为震后拉张,其余断裂除了安宁河断裂和小江断裂中段与最北端存在挤压滑动亏损速率外均为拉张速率.  相似文献   

8.
小江断裂带是我国大陆地震活动最为强烈的地区之一。古地震和历史地震资料、综合断裂活动背景和地震活动性分析表明,位于川滇块体东边界的小江断裂带存在地震空区与潜在的强震危险。巴颜喀拉地块东边界发生2008年汶川8.0级巨震不到两年,其南边界的甘孜一玉树断裂带在2010年发生了玉树7.1级大地震,使与该地块相连的小江断裂带的强震危险性更受关注。断层滑动速率是评估未来地震危险性的重要依据,但获取孕震深处的滑动速率具有相当大的难度。  相似文献   

9.
安宁河—则木河断裂带及东侧的大凉山断裂带作为大凉山次级块体西侧与东侧边界,具有发生大地震的活动构造背景.本文意在用有限的形变数据和地震数据两种资料评估大凉山次级块体边界断裂带的孕震深度及其地震危险性.采用弹性半空间模型对安宁河断裂、则木河断裂和大凉山断裂带滑动速率和闭锁深度进行了详细分析;计算了90%、95%和99%不同分位数的小震深度下界值并与GPS得到的闭锁深度进行对比,分析二者异同点.结果显示,安宁河断裂北段闭锁深度为6.2 km,不到90%分位小震震源深度16 km的一半,表明该段在1952年MS63/4地震后,断层逐渐趋于闭锁;而在6~16 km深度主要以小地震和无震滑动两种形式释放能量,存在深部蠕滑运动.大凉山断裂北段在0~10 km范围内完全闭锁,而10~25 km闭锁程度较弱.安宁河断裂南段、则木河断裂、大凉山断裂中段和南段均处于完全闭锁阶段,闭锁深度接近90%分位数小震深度的下界值,标准差约为0.94 km.此外,A、B、C三个剖面的反演结果表明大凉山次级块体的运动自北向南具有顺时针旋转特性,与川滇块体顺时针运动特征吻合.大凉山次级块体北、中、南三段边界断裂及块体内部总的滑动速率分别为9.8 mm·a-1、8.9 mm·a-1和8.4 mm·a-1,呈自北向南递减趋势.大凉山断裂南段布拖断裂和交际河断裂积累的能量分别能够发生一次矩震级为MW7.5的地震,离逝时间已经接近地震平均复发间隔,未来100年大地震的发震概率分别为7.1%和5.9%,应对其地震危险性给予重视.  相似文献   

10.
位于青藏高原中北部的巴颜喀拉地块是我国西部近年来的主体地震活动区,一系列MW7.0以上强震均发生在该次级块体周边,而其北边界东昆仑断裂带是一条长达2000 km、规模最大、活动性最强的深大断裂带.2001年在东昆仑断裂带中段发生了MW7.8昆仑山地震,2021年5月在其震中东南部大约450 km处巴颜喀拉块体内部一次级断裂上发生了MW7.3玛多地震.玛多地震对人们以往认为强震更可能发生在巴颜喀拉块体边界断裂上的认识提出挑战,但是也为研究巴颜喀拉块体边界断裂与块体内部次级断裂活动关系、地震触发关系带来机遇.本文利用前期基于2001年昆仑山地震后积累的大量InSAR数据获得的震后大范围形变场时空演化图像和库仑应力变化模型,探讨昆仑山地震与玛多地震的关系.InSAR震后观测结果显示:昆仑山地震后沿东昆仑断裂带出现了长达500 km的大范围南北不对称震后形变场,其中南盘形变宽度和量级均明显大于北盘,南盘形变宽度达到250 km,断层近场相对平均形变速率达到>20 mm·a-1,而且南盘向南衰减梯度小,...  相似文献   

11.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

12.
The Haiyuan-Liupanshan fault,an active tectonic feature at the Tibetan Plateau's northeastern boundary,was ruptured by two MS earthquakes(1920 and 1927)bracketing an unbroken section(the Tianzhu seismic gap).A high seismic hazard is expected along the gap.To monitor deformation characteristics and do a seismic risk assessment,we made measurements at two newly built campaign-mode Global Positioning System(GPS) stations and 13 pre-existing stations in 2013 and 2014.Adding existing data from 1999 to 2014,we derived a new velocity field.Based on the horizontal velocity,we used three block models to invert the deformation of four crustal blocks.The results suggest non-uniform deformation in the interior of the Lanzhou block,the Ordos block and the Alaxan block,but uniform deformation in the Qilian block.Fault slip rates derived from block models show a decreasing trend from west to east,(2.0-3.2 mm/a on the Haiyuan fault to 0.9-1.5 mm/a on the Liupanshan fault).The Haiyuan fault evidences sinistral striking-slip movement,while the Liupanshan fault is primarily thrusting due to transformation of the displacement between the strike-slip and crustal shortening.The locking depth of each segment along the Haiyuan fault obtained by fitting the fault parallel velocities varies drastically from west to east(21.8-7.1 km).The moment accumulation rate,calculated using the slip rate and locking depth,is positively correlated with the locking depth.Given the paucity of large seismic events during the previous millennium,the Tuolaishan segment and the Maomaoshan segment have higher likelihood of nucleation for a future event.  相似文献   

13.
利用1999-2007和2009-2011年中国大陆GPS水平速度场数据, 采用DEFNODE(反演计算弹性岩石圈块体旋转、 应变和块体边界断层闭锁或同震滑动的Fortran程序)负位错反演程序估算了芦山地震前龙门山断裂带的三维闭锁程度, 并结合剖面结果分析了断层深浅部变形特征. GPS反演结果表明, 1999-2007年, 龙门山断裂中北段(闭锁比例为0.99)处于强闭锁(本文将闭锁比例大于0.97的称为强闭锁)状态; 龙门山断裂南段地表以下深度16 km内为强闭锁, 深度16-21 km处闭锁比例降低为0.62, 深度21-24 km处整条断裂逐渐转变为蠕滑状态. 2009-2011年, 即汶川地震后, 龙门山断裂中北段处于震后蠕滑状态; 龙门山断裂南段深度16-21 km处闭锁比例降低为0.45, 其它位置闭锁程度保持不变. GPS剖面结果显示, 2009-2011年, 即汶川地震后, 龙门山断裂中北段为逆冲兼右旋走滑运动; 而南段断层不能自由滑动、 变形宽度较大. 综合分析认为, 汶川地震时, 龙门山断裂南段并没有发生破裂, 一直处于较强的闭锁状态, 汶川地震的发生又加速了芦山地震的孕育进程; 由于龙门山断裂带南段的闭锁深度较中北段浅, 因此芦山地震较汶川地震强度低、 震级小、 破裂范围窄.   相似文献   

14.
Located at the bend of the northeastern margin of Qinghai-Tibet Plateau, the Haiyuan fault zone is a boundary fault of the stable Alashan block, the stable Ordos block and the active Tibet block, and is the most significant fault zone for the tectonic deformation and strong earthquake activity. In 1920, a M8.5 earthquake occurred in the eastern segment of the fault, causing a surface rupture zone of about 240km. After that, the segment has been in a state of calmness in seismic activity, and no destructive earthquakes of magnitude 6 or above have occurred. Determining the current activity of the Haiyuan fault zone is very important and necessary for the analysis and assessment of its future seismic hazard. To study activity of the Haiyuan fault zone, the degree of fault coupling and the future seismic hazard, domestic and foreign scholars have carried out a lot of research using geology methods and GPS geodetic techniques, but these methods have certain limitations. The geology method is a traditional classical method of fault activity research, but dislocation measurement can only be performed on a local good fault outcrop. There are a limited number of field measurement points and the observation results are not equally limited depending on the sampling location and sampling method. The distribution of GPS stations is sparse, especially in the near-fault area, there is almost no GPS data. Therefore, the spatial resolution of the deformation field features obtained by GPS is low, and there are certain limitations in the kinematic parameter inversion using this method. In this study, we obtain the average InSAR line-of-sight deformation field from the Maomaoshan section to the mid-1920s earthquake rupture segment of the Haiyuan earthquake in the period from 2003 to 2010 based on the PSInSAR technique. The results show that there are obvious differences between the slip rates of the two walls of the fault in the north and the south, which are consistent with the motion characteristics of left-lateral strike-slip in the Haiyuan fault zone. Through the analysis of the high-density cross-fault deformation rate profile of the Laohushan segment, it is determined that the creep length is about 19km. Based on the two-dimensional arctangent model, the fault depth and deep slip rate of different locations in the Haiyuan fault zone are obtained. The results show that the slip rate and the locking depth of the LHS segment change significantly from west to east, and the slip rate decreases from west to east, decreasing from 7.6mm/a in the west to 4.5mm/a in the easternmost. The western part of the LHS segment and the middle part are in a locked state. The western part has a locking depth of 4.2~4.4km, and the middle part has a deeper locking depth of 6.9km, while the eastern part is less than 1km, that is, the shallow surface is creeping, and the creep rate is 4.5~4.8mm/a. On the whole, the 1920 earthquake's rupture segment of the Haiyuan fault zone is in a locked state, and both the slip rate and the locking depth are gradually increased from west to east. The slip rate is increased from 3.2mm/a in the western segment to 5.4mm/a in the eastern segment, and the locking depth is increased from 4.8km in the western segment to 7.5km in the eastern segment. The results of this study refine the understanding of the slip rate and the locking depth of the different segments of the Haiyuan fault zone, and provide reference information for the investigation of the strain accumulation state and regional seismic hazard assessment of different sections of the fault zone.  相似文献   

15.
利用1999—2007期GPS水平速度场数据,采用Defnode负位错反演程序估算了龙门山断裂在汶川地震前的闭锁程度和滑动亏损分布,结合龙门山断裂带附近地表水平应变率场结果,综合分析了震前地壳变形特征.反演结果表明,震前龙门山断裂中北段处于完全闭锁状态,闭锁深度达到21 km(闭锁比例0.99)左右,垂直断层方向的挤压滑动亏损速率约为2.2 mm/a,平行断层方向的右旋滑动亏损速率约为4.6 mm/a.龙门山断裂南段只有地表以下12 km闭锁程度较高(闭锁比例0.99),垂直断层方向滑动亏损速率约为1.4 mm/a,平行断层方向滑动亏损速率约为4.6 mm/a;在12~16 km处闭锁比例约为0.83,垂直断层方向滑动亏损速率约为1.2 mm/a,平行断层方向滑动亏损速率约为3.8 mm/a;在16~21 km处闭锁比例约为0.75,垂直断层方向滑动亏损速率约为1.1 mm/a,平行断层方向滑动亏损速率约为3.5 mm/a.在21~24 km处整条断裂均逐步转变为蠕滑.上述反演结果与区域应变计算获得的龙门山断裂带中北段整体应变积累速率较低、南段应变积累速率较高相一致,均表明中北段闭锁程度高、南段闭锁程度稍低,该特征可以较好地解释汶川地震时从震中向北东向单向破裂现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号