首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ilvaite samples from six different localities in Japan are found to be members of a solid-solution series varying from Ca(Fe2+,Fe3+)2Fe2+(OH)O Si2O7 to approaximately Ca(Fe2+,Fe3+)2Fe 0.5 2+ Mn 0.5 2+ (OH)O Si2O7, and have been studied by Mössbauer spectrometry and magnetic measurements. The variation in intensity of Mössbauer doublets confirms that Mn substitutes for Fe2+ in the M(B) cation site. An temperatures decreasing from 300 K to 4K, an abrupt change in the reciprocal mass magnetic susceptibility, 1/x g, occurs about 120 K; 1/x g depends linearly upon temperature above 120 K. This change, which is characterized by an unusual mode of decrease in 1/x g, has been interpreted based on Mössbauer spectra at 80 K: the spectra of Fe2+ and Fe3+ in the M(A) site show Zeeman splitting, whereas those of Fe2+ in the M(B) site do not show the effect. This Mössbauer evidence suggests that magnetic spins of Fe in M(A) are in an ordered state, very likely of antiparallel coupling, whereas those of Fe in M(B) are randomly oriented, showing that below 120 K ilvaite has two different magnetic states for Fe ions. As there is a line of evidence that the spins of Fe in M(B) would take an ordered state at extremely low temperatures, ilvaite magnetism may be regarded as basically antiferromagnetic. The magnetic spins of Fe in M(A) and M(B) undergo magnetic transitions at different specific temperatures, thus giving as a whole unusual features of magnetism.  相似文献   

2.
The crystal and magnetic structures of ilvaite Ca(Fe2+, Fe3+)Fe2+Si2O7O(OH) have been obtained by profile refinement of high resolution neutron powder data from a natural sample from Seriphos, Greece. Below about 400 K an electronic transition from an itinerant to an ordered state is expected, with the structure changing from orthorhombic to monoclinic. The structure remains monoclinic P2 1/a down to 5 K, with Fe2+ almost completely ordered on one of the A-sites and Fe3+ on the other: the ordering may increase with decreasing temperature. The B-site contains Fe2+ plus a small amount of Mn2+ impurity. There are two magnetic transitions, at 116 K and 40 K: at 80 K the Fe2+ and Fe3+ spins on the A-sites along one infinite c-axis chain are parallel, and antiparallel to those along the adjoined edge-sharing centrosymmetrically related chain. The spin vectors are all perpendicular to the plane of these chains, i.e. almost parallel to the crystallographic b-axis. At 5 K, this order is maintained, but the Fe2+ spins on the B-sites order antiferromagnetically as well, again almost along the b-axis. These results explain the earlier Mössbauer and magnetisation measurements.  相似文献   

3.
The mixed valence iron silicate ilvaite, CaFe 2 2+ Fe3+Si2O8(OH), displays electron delocalization associated with Fe2+→Fe3+ charge transfer as observed by Mössbauer spectroscopy. Previous studies report the observation of an ‘electron hopping phenomenon’ with resolution of discrete valence states below 320 K. Mössbauer spectra of a suite of naturally occurring ilvaites were recorded over a temperature range, 80 K to 575 K. Five quadrupole doublets were resolved by computer fitting and assigned to Fe2+(A), Fe2+(B), Fe3+(A), and Fe2+(A)→Fe3+(A)‖c and ⊥c. Contrary to prior work, doublets associated with electron delocalization are resolved at 80 K and preclude the use of a Verwey-type order-disorder model. We propose a thermal activation model and discuss its criteria from molecular orbital and mineralogical viewpoints.  相似文献   

4.
We report Mössbauer milliprobe measurements on small single-crystals of a magnesium-rich hedenbergite, approximate composition CaFe0.54Mg0.46 (SiO3)2, in which each of the electric-field gradient and mean-squared displacement tensors for Fe2+ in the M1 site of the crystal are precisely determined. Each tensor has in common, as required of crystal symmetry, the twofold axis of the monoclinic unit cell, but the principal directions of the two tensors in the perpendicular plane are non-coincident. The mean-squared displacements determined in the Mössbauer experiment exceed those determined from the X-ray vibration ellipsoids for Fe2+/M1 by a factor of 1.6; the anisotropy in the mean-squared displacement tensor from the Mössbauer measurements exceeds that from X-ray by a factor of around 5. The ramifications of these differences are discussed.  相似文献   

5.
The different Fe2+ lattice sites in iron-rich chlorites have been characterized by Mössbauer spectroscopy and molecular orbital calculations in local density approximation. The Mössbauer measurements were recorded at 77?K within a small velocity range (±3.5?mm?s?1) to provide high energy resolution. Additionally, measurements were recorded in a wider velocity range (±10.5?mm?s?1) at temperatures of 140, 200, and 250?K in an applied field (7?T) parallel to the γ-beam. The zero-field spectra were analyzed with discrete Lorentzian-shaped quadrupole doublets to account for the Fe2+ sites M1, M2, and M3 and with a quadrupole distribution for Fe3+ sites. Such a procedure is justified by the results obtained from MO calculations, which reveal that different anion (OH?) distributions in the first coordination sphere of M1, M2, and M3 positions have more influence on the Fe2+ quadrupole splitting than cationic disorder. The spectra recorded in applied field were analyzed in the spin-Hamiltonian approximation, yielding a negative sign for the electric field gradient (efg) of Fe2+ in the M1, M2, and M3 positions. The results of the MO calculations are in quantitative agreement with experiment and reveal that differences in the quadrupole splittings (ΔE Q ), their temperature dependence and in the isomer shifts (δ) of Fe2+ in M1, M2, and M3 positions can theoretically by justified. Therefore, the combined Mössbauer and MO investigation shows that the three Fe2+ lattice sites in the chlorites investigated here can be discriminated according to their ΔE Q -δ parameter pairs. With the calculated average iron-oxygen bond strength, the MO study provides an explanation for the observed trend that the population of the three lattice sites by Fe2+ increases according to the relation M1?相似文献   

6.
The influence on the spinel structure of Fe3+ → Cr substitution was studied in flux-grown synthetic single crystals of the magnesiochromite–magnesioferrite (MgCr2O4–MgFe2O4) solid solution series. Samples were analysed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption and Mössbauer spectroscopy. With the exception of iron-poor samples (3–12 mol-% MgFe2O4), optical absorption and Mössbauer spectra show that iron occurs almost exclusively as trivalent Fe in the present samples. A very intense and broad absorption band at ca 7,800 cm?1 dominates the optical absorption spectra of samples with higher Fe-contents. The appearance of this band is related to a distinct structural disorder of Fe3+ and a development of magnetic ordering as demonstrated by Mössbauer spectra. Profound composition-related changes are observed in the Mössbauer spectra, which are magnetically unsplit in the range 2–41 mol-% magnesioferrite, but become magnetically split in the range 59–100 mol-% magnesioferrite. Structural parameters a 0 and M–O increase with magnesioferrite content and inversion degree, while u and T–O decrease. Our study confirms the previously reported (Lavina et al. 2002) influence of Fe3+ at the M site on T–O bond lengths in the spinel structure.  相似文献   

7.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

8.
The Mössbauer spectra of five samples of Fe x O with compositions in the range 1.00>x>0.95 have been recorded at 298 K and 4.2 K. The spectrum of Fe x O at 298 K consists of an asymmetric doublet which was fitted to one Fe2+ singlet, two Fe2+ doublets and 1 Fe3+ singlet. The Mössbauer parameters vary consistently with the increasing density of defects as x decreases. The Mössbauer spectrum of Fe x O at 4.2 K consists of a large number of unresolved lines. The data were fitted to a series of singlets to enable the rough calculation of quantities relating to the mean Fe2+ and Fe3+ environments. The results of the fits to the 298 K spectra are briefly discussed in terms of a physical model for the defect structure of Fe x O.  相似文献   

9.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

10.
57Fe-Mössbauer spectra of eleven Fe-Mg-bearing staurolite samples, synthesized at 5, 20 and 25 kbar and 680°C, ranging in composition from xFe?=1.00 to xFe?=0.15, and of two Zn-Fe-bearing staurolite samples, synthesized at 20 kbar and 700°C with xFe?=0.10 and xFe?=0.32 were collected at room temperature. The spectra reveal that about 80% of Fetot (in case of Fe-Mg-bearing staurolite) and about 70% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the three subsites Fe1, Fe2 and Fe3 of the tetrahedral T2-site. The refinement of the spectra results in almost identical values for the isomer shift (IS) (±1.0 mm/s) but significantly different values for the quadropole splitting (QS) for the three subsites which is in accordance with the different distortions of these sites. About 8% of Fetot (in case of Fe-Mg-bearing staurolite) and 13% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the octahedral M4 site, while the remainder percents of Fetot indistinguishably occur as Fe2+ at the octahedral M1 and M2 sites of the kyanite-like part of the structure. Within the whole Fe-Mg-staurolite solid solution series the Mössbauer parameters QS of the sites M4 and (M1, M2) vary systematically with composition whereas IS remains constant. There is a high negative correlation of the total Mg-content with Fe-occupation of all the Fe-bearing sites indicating a continuous substitution of Fe2+ by Mg on all these sites. Synthetic Fe-staurolites show no increasing occupation of the octahedral sites by two-valent cations with pressure, as was assumed by several authors.  相似文献   

11.
The partitioning of Fe and Mn between the large M(4) site and the octahedral sites, M(1,2,3) in the amphibole structure has been investigated in two natural manganogrunerites of compositions Ca0.1Mn1.9 Mg1.25Fe2+ 3.56Fe3+ 0.38Si7.81O22(OH)2 and Ca0.24Mn1.57 Mg2.27 Fe2+ 2.76Fe3+ 0.32Si7.84O22(OH)2. The long-range cation distribution in the two samples has been elucidated by in situ neutron powder diffraction revealing that Mn is preferentially ordered onto M(4) ? M(2) >M(1) >M(3) in both samples. Partitioning of Mn from M(4) into the octahedral sites begins at 350 °C, with site exchange energies of ?16.6 kJ mol?1 and ?14.9 kJ mol?1, in samples containing 1.90 and 1.57 Mn apfu, respectively. Mössbauer and infrared spectroscopy have been used to study the samples at room temperature, and Mössbauer data agree well with the diffraction results, confirming that high-temperature cation distributions are retained during cooling. The fine structure in the hydroxyl-stretching region of the IR absorption spectra has been used to discuss qualitatively the site occupancies of the coordinating M(1)M(3)M(1) triplet, linked by O(3). On the basis of such modelling, we conclude that a degree of local clustering is present in both samples.  相似文献   

12.
The valence and distribution of iron in vivianite, lazulite, babingtonite, rockbridgeite, acmite, aegirine-augite, hedenbergite, and ilvaite were studied with optical and Mössbauer spectroscopy. Optically activated intervalence charge transfer between Fe2+ and Fe3+ in neighboring sites through common edges or faces is observed in all these minerals irrespective of the polymerization of the iron-oxygen polyhedra ranging from finite clusters to infinite structural units. However, a distinct decrease occurs in the energy of the corresponding optical absorption band with increasing number of Fe2+ and Fe3+ ions involved in the charge transfer process. Thermally activated electron delocalization between Fe2+ and Fe3+ occurs only if Fe2+ and Fe3+ occupy crystallographically equivalent or geometrically very similar neighboring sites which share common edges to form extended structural units such as the ribbon in ilvaite. If the Fe-O polyhedra form finite clusters of two, three, or four polyhedra (e.g., in vivianite, lazulite, and babingtonite, respectively) no thermally-activated mixed-valence states of iron are observed. In aegirine, extended regions of the M1 chain are statistically occupied by Fe2+ and Fe3+ giving rise to thermally-activated electron delocalization in addition to the intervalence band in the optical absorption spectrum. The intensity of the optical intervalence absorption has been measured in a number of systems: ? values range from 60 to 210.  相似文献   

13.
The Mössbauer absorption spectra of arfvedsonite are composed of three quadrupole doublets which are ascribed to Fe2+ in M1 and M2 sites and to Fe3+ in M2 sites. The relative intensities of the resonances are a measure of the distribution of iron at the different sites, but it is necessary to correct for a difference between the recoil-free fractions. At room temperature [Fe2+] seems detected with an efficiency of only about 85% of that of [Fe3+]. Results of [Fe2+]/[Fe3+] determinations by Mössbauer spectroscopy and by wet chemical analysis of a series of arfvedsonite samples, separated from various rocks from the Ilimaussaq intrusion, south Greenland, are compared and agree reasonably well.  相似文献   

14.
A refined set of Mössbauer parameters (isomer shifts, quadrupole splittings, Fe2+/Fe3+ ratios) and lattice parameters were obtained from annites synthesized hydrothermally at pressures between 3 and 5 kbars, temperatures ranging from 250 to 780° C and oxygen fugacities controlled by solid state buffers (NNO, QMF, IM, IQF). Mössbauer spectra showed Fe2+ and Fe3+ on both the M1 and the M2 site. A linear relationship between Fe3+ content and oxygen fugacity was observed. Towards low Fe3+ values this linear relationship ends at ≈10% of total iron showing that the Fe3+ content cannot be reduced further even if more reducing conditions are used. This indicates that in annite at least 10% Fe2+ are substituted by Fe3+ in order to match the larger octahedral layer to the smaller tetrahedral layer. IR spectra indicate that formation of octahedral vacancies plays an important role for charge balance through the substitution 3 Fe2+ → 2 Fe3+ + ?(oct).  相似文献   

15.
A combined polarized optical absorption and 57Fe Mössbauer spectroscopy study of inhomogeneous, Fe and Ti-bearing terrestrial hibonite (Madagascar) has been carried out. Mössbauer data were also obtained on synthetic material prepared under different fo2 inconditions. A strong band at 5400 cm-1 in the near-infrared spectra is attributed to spin-allowed d-d transitions of Fe2+ occupying tetrahedral sites within the spinel blocks of the hibonite crystal structure. There is agreement with the Mössbauer results, showing that ferrous iron orders onto a single, low-coordinated crystallographic site. Ferric iron is distributed over several positions, but shows strongest preference for the large bipyramidal site located outside the spinel blocks. The colour and pleochroism of hibonite in thin section is related to a prominent UV absorption edge, and several broad absorption bands in the visible spectrum ascribed to charge-transfer transitions involving Fe2+, Fe3+ and Ti4+.  相似文献   

16.
Babingtonite, Ca2Fe2+Fe3+[Si5O14(OH)] (Z?=?2, space group $ P\overline{1} $ ) from Yakuki mine (Japan), Grönsjöberget (Sweden), Kandivali Quarry (India), Baveno Quarry (Italy), Bråstad Mine (Norway), and Kouragahana (Japan), and manganbabingtonite, Ca2(Mn2+, Fe2+)Fe3+[Si5O14(OH)], from Iron Cap mine (USA) were studied using electron-microprobe analysis (EMPA), 57Fe Mössbauer analysis and single-crystal X-ray diffraction methods to determine the cation distribution at M1 and M2 and to analyze its effect on the crystal structure of babingtonite. Although all studied babingtonite crystals are relatively homogeneous, chemical zonation due to mainly Fe ? Mn substitution is observed in manganbabingtonite. Mössbauer spectra consist of two doublets with isomer shift (I.S.)?=?1.16–1.22 mm/s and quadrupole splitting (Q.S.)?=?2.33–2.50 mm/s and with I.S.?=?0.38–0.42 mm/s and Q.S.?=?0.82–0.90 mm/s, assigned to Fe2+ and Fe3+ at the M1 and M2 octahedral sites, respectively. The determined ratio of Fe2+/total Fe in manganbabingtonite (0.26) was smaller than that in the others (0.35–0.44) because of high Mn2+ content instead of Fe2+. The unit-cell parameters of babingtonite are a?=?7.466–7.478, b?=?11.624–11.642, c?=?6.681–6.690 Å, α?=?91.53–91.59, β?=?93.86–93.94, γ?=?104.20–104.34º, and V?=?560.2–562.3 Å3, and those of manganbabingtonite are a?=?7.4967(3), b?=?11.6632(4), c?=?6.7014(2) Å, α?=?91.602(2), β?=?93.989(2), γ?=?104.574(3)º, and V =565.09(5) Å3. Structural refinements converged to R 1 values of 1.64–3.16 %. The <M1-O> distance was lengthened due to the substitution of large octahedral cations such as Mn2+ for Fe2+. The increase of the M1-O8, M1-O8’ and M1-O13 lengths with mean ionic radii is slightly more pronounced than of the other M1-Oi lengths. The lengthened M1-O13 distance leads the positive correlation between Si5-O15-Si1 angle and M1-O13 distance. The increase of Si2-O3-Si1 and Si5-O12-Si4 angles due to the increase of mean ionic radius of M2 is also observed.  相似文献   

17.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

18.
Mössbauer fractions f are reported for various ferrous- and/or ferric-containing oxides, hydroxides, silicates, and phosphates to extend the list previously reported by De Grave and Van Alboom (1991). The f fractions were evaluated from the experimental temperature dependencies of their center shifts, assuming the Debye model for the lattice vibrations. For most Fe2+ sites the characteristic Mössbauer or lattice temperatures ΘM are in the range 300–400 K, while those for Fe3+ sites are close to or exceed 500 K, implying significantly higher f fractions for Fe3+ than for Fe2+, in particular at room temperature. A correlation between ΘM and the coordination type, or, for a given valence state and coordination type, between ΘM and the mineral type is, however, not obvious.  相似文献   

19.
The Mössbauer spectra of one chromite at 298 K and one chromite at 298, 200, 170, 140 and 90 K have been analyzed in this study. A Voigt-based quadrupole splitting distribution (QSD) method was used to analyze the spectra. The tetrahedral site Fe2+ and the octahedral site Fe3+ quadrupole splitting distributions (QSDs) were obtained from the Mössbauer spectra of chromites, and the multiple tetrahedral site Fe2+ Gaussian QSD components and the large widths σ Δ of the Gaussian QSD components of the tetrahedral site Fe2+ QSDs for chromites were attributed to next-nearest neighbor effects. In addition, temperature dependences of the isomer shift and the quadrupole splitting were presented and discussed. Comparisons between the Mössbauer parameters for thickness-corrected folded spectra and raw-folded spectra of chromites were made, and the results show that the two sets of the Mössbauer parameters and ratios of ferric to total iron as well as χ2 are very close to each other. This is because of the small absorber thickness of chromites in this study. Comparisons between the Mössbauer parameters of chromites obtained using the Voigt-based QSD method and a Lorentzian doublet method were also made. The results show that there are some differences between the two sets of the Mössbauer parameters and ratios of ferric to total iron, but not significant. However, much larger χ2 were obtained when the Lorentzian doublet method was used to fit the spectra of chromites. This indicates that the Voigt-based QSD method is more adequate to analyze the Mössbauer spectra of chromites from the point of view of statistics.  相似文献   

20.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号