首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Efforts to understand and simulate the global climate in numerical models have led to regional studies of the energy and water balance. The Baltic Basin provides a continental scale test basin where meteorology, oceanography and hydrology all can meet. Using a simple conceptual approach, a large-scale hydrological model of the water balance of the total Baltic Sea Drainage Basin (HBV-Baltic) was used to simulate the basinwide water balance components for the present climate and to evaluate the land surface components of atmospheric climate models. It has been used extensively in co-operative BALTEX (The Baltic Sea Experiment) research and within SWECLIM (Swedish Regional Climate Modelling Programme) to support continued regional climate model development. This helps to identify inconsistencies in both meteorological and hydrological models. One result is that compensating errors are evident in the snow routines of the atmospheric models studied. The use of HBV-Baltic has greatly improved the dialogue between hydrological and meteorological modellers within the Baltic Basin research community. It is concluded that conceptual hydrological models, although far from being complete, play an important role in the realm of continental scale hydrological modelling. Atmospheric models benefit from the experience of hydrological modellers in developing simpler, yet more effective land surface parameterisations. This basic modelling tool for simulating the large-scale water balance of the Baltic Sea drainage basin is the only existing hydrological model that covers the entire basin and will continue to be used until more detailed models can be successfully applied at this scale. Received November 24, 2000 Revised April 4, 2001  相似文献   

2.
This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation (P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.  相似文献   

3.
Observations of surface characteristics, meteorological conditions and energy balance components from Vancouver, B.C. are used to test the validity of the output from three one-dimensional surface energy balance models. The results show that whereas all of the models provide good simulations of net radiation, none can consistently predict the turbulent fluxes of sensible and latent heat using easily available input data. Inability to handle the role of water availability and its impact on evapotranspiration is identified as the principal problem.  相似文献   

4.
用统计方法和水量平衡法推导出江淮地区潜水蒸发经验计算模型。利用农田水分平衡原理分别在江淮地区建立了引入潜水蒸发量和没有引入潜水蒸发量的冬小麦和大豆土壤水分动态预报模型,并对这两种模型在地下水浅埋条件下的预报准确度进行比较。1980年的比较结果是:当预报时效为10天时,两种作物7个时段的土壤水分平均绝对误差前者为8.2 mm,后者为20.1 mm,平均相对误差分别为2.8%和6.8%。引入潜水蒸发量后,冬小麦和大豆土壤水分动态预报模型的预报准确度明显提高。  相似文献   

5.
In an effort to understand the sources of uncertainty and the physical consistency of climate models from the North American Regional Climate Change Assessment Program (NARCCAP), an ensemble of general circulation models (GCMs) and regional climate models (RCMs) was used to explore climatological water balances for the Churchill River basin in Labrador, Canada. This study quantifies mean atmospheric and terrestrial water balance residuals, as well as their annual cycles. Mean annual atmospheric water balances had consistently higher residuals than the terrestrial water balances due, in part, to the influences of sampling of instantaneous variables and the interpolation of atmospheric data to published pressure levels. Atmospheric and terrestrial water balance residuals for each ensemble member were found to be consistent between base and future periods, implying that they are systemic and not climate dependent. With regard to the annual cycle, no pattern was found across time periods or ensemble members to indicate whether the monthly terrestrial or atmospheric root mean square residual was highest. Because of the interdependence of hydrological cycle components, the complexity of climate models and the variety of methods and processes used by different ensemble members, it was impossible to isolate all causes of the water balance residuals. That being said, the residuals created by interpolating a model's native vertical resolution onto NARCCAP's published pressure levels and the subsequent vertical interpolation were quantified and several other sources were explored. In general, residuals were found to be predominantly functions of the RCM choice (as opposed to the GCM choice) and their respective modelling processes, parameterization schemes, and post-processing.  相似文献   

6.
Summary ?This paper deals with variations and trends in some components of the water balance: the soil water content; evaporation loss from the soil (from the surface and underlying layers); transpiration; ground water recharge and runoff. These components are calculated by means of the Palmer procedure. This analysis is based on data from Osijek, Croatia from this century (1900–1995). Besides the meteorological input parameters necessary for the water balance calculations, i.e. precipitation, temperature and relative humidity, the pedological characteristics of this area have also been taken into account. Fluctuations have been considered by means of the 11-year binomial filtered series and linear trends were tested by means of the Mann-Kendall rank test. For a closer look on the trends of water balance components, a progressive analysis of the time series was performed, too. The results show a significant increase in potential evapotranspiration and evapotranspiration and decrease in runoff and soil water content has occurred during the century. Received February 22, 1999/Revised August 3, 1999  相似文献   

7.
Results of detecting water balance components of experimental watersheds from long-term observations at the Valdai Affiliation of the SHI are presented. Methods of measurements, calculations, and corrections of precipitation amount, measurement of evaporation from the land, changes in the soil moisture reserves and ground water reserves are considered. All components of the water balance of watersheds are measured independently which allows estimating quantitatively the residuals and measurement and calculation errors. A preliminary analysis is performed of seasonal values of the water balance components and their changes in the period of most intensive observations (1952–1985) which is of a great value for studying the conditions of the river runoff formation in small watersheds.  相似文献   

8.
本文利用甘肃省西峰市农业气象试验站非灌溉地冬小麦田间土壤水分资料、气候资料,分析了不同年型农田土壤水分的时空变化特征,从土壤水分平衡方程出发,讨论了冬小麦返青至成熟期间降水量、作物耗水量、渗漏量和土壤储水量变化各平衡分量的动态变化及其相互关系。对冬小麦产量与不同作物发育期的作物耗水量之间进行相关普查,结果表明影响小麦产量最显著的时段是拔节~孕穗期。分别运用物理统计和经验统计方法建立了冬小麦产量与作物耗水量的关系模型,认为后者模拟效果较好。  相似文献   

9.
江苏省主要作物农田水分盈亏量的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用江苏省1980~1992年土壤湿度资料,根据土壤水分平衡原理,运用运筹学中的优化技术,结合本省的自然条件和作物生长实际情况,提出有效降水量、下层水分补给量等计算方法,建立了旱地和稻田农田水分盈亏量的计算模式,以便应用实时降水和土壤湿度等资料,计算全省农田水分盈亏量,及时提供农业气象情报服务。  相似文献   

10.
史灌河流域水量平衡研究   总被引:3,自引:0,他引:3  
建立了一个水量平衡模型,并用1998、1999年淮河流域能量和水循环试验(HUBEX)期间获得的史灌河流域(HUBEX水文试验区)加密观测资料来率定模型中的参数.结论表明:(1)水量平衡的要素计算合理;(2)梅山、鲇鱼山、蒋集土壤含水量的平均值系列基本上反映了流域蓄水量的变化过程;(3)流域蓄水量的衰减系数、蒸发能力的折算系数比较稳定,不应通过调整这些系数来实现水量平衡.  相似文献   

11.
为了研究和揭示宁夏南部地气能量传输过程及特点并进一步评估退耕还林还草的生态效应, 利用Landsat-7 ETM+卫星遥感资料所求取的地表特征参数, 将地表分成水体、裸地、半裸地、草地、林地5类地表覆盖类型, 结合常规气象观测资料, 分别计算得出宁夏南部地表辐射和热量平衡各量的区域分布, 并给出各量的分布图和直方图, 分类别讨论了地表辐射和热量平衡各量分布特征, 使得对宁夏南部区域地表辐射和热量平衡区域分布有一个直观、综合的了解和认识。研究表明, 植被分布对地表辐射和热量平衡各量影响很大。  相似文献   

12.
The global energy balance from a surface perspective   总被引:1,自引:1,他引:0  
In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm?2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 and 397 Wm?2, respectively, this leaves 106 Wm?2 of surface net radiation available globally for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm?2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.  相似文献   

13.
Summary This paper presents an the evaluation of three mathematical models for the estimation of 10-day drain discharge using weather, pedological and phenological parameters. One model uses modified Palmer’s procedure for the calculation of water balance components and the second two use empirical multiple linear regression. The models have been applied to data of an amelioration experimental field in central Croatia (south-western part of the Pannonian Lowland), where a set of average 10-day air temperature and relative humidity data, average wind speed, cumulative precipitation and drain discharge amounts, insolation and soil moisture data and vegetation indices have been collected. The experiment has been performed during the period 1990–1992. The models have been tested by comparing estimated and observed 10-day drain discharge amounts. All models mainly give acceptable cumulative results although their accuracy depends on the season.  相似文献   

14.
Presented are the estimates of precipitation amount and evaporation for the Black Sea basin based on the data of numerical regional reanalysis. The spatial distribution of considered variables is compared with the results obtained before using the method of extrapolation of measurements at the coastal meteorological stations. The computed water balance components of the Black Sea compared with the available literature data are used for obtaining the estimate of the mean water discharge in the Bosphorus.  相似文献   

15.
This paper explores the relationship between the complexity of the land surface energy balance parameterization and the simulation of means, variances and extremes in a climate model. We used the BMRC climate model combined with the protocol of AMIP-II to perform six ensemble simulations for each of four levels of surface energy balance complexity. Our results were then compared with other AMIP-II results in terms of the mean, variance and extremes of temperatures and precipitation. In terms of the zonally-averaged mean and the maximum temperatures and precipitation, the surface energy balance complexity did not systematically affect the BMRC climate model results. The zonal minimum temperature was affected by the inclusion of tiling and/or a temporally variable canopy conductance. We found no evidence that surface energy balance complexity affected the globally- or zonally-averaged variances. Some quite large differences were identified in the probability density functions of maximum (10 K) and minimum (4 K) temperature caused by surface tiling and/or the inclusion of a time-varying canopy conductance. With these included, the model simulated a higher probability of cooler minima and warmer maxima and therefore a different diurnal temperature range. Adding interception of precipitation led to an increase in the likelihood of more extreme precipitation. Thus, provided interception, surface tiling and a time-variable stomatal conductance are included in a land surface model, the impact of other uncertainties in the parameterization of the surface energy balance are unlikely to limit the use of climate models for simulating changes in the extremes. Most published results indicating changes to precipitation and temperature extremes due to increasing carbon dioxide are therefore unlikely to be significantly limited by uncertainty in how to parameterize the surface energy balance. Given that the variations in surface energy balance complexity included in our experiments approximates the range included in the AMIP-II models, we conclude that it this is unlikely to explain the differences found between the AMIP-II simulations. This does not mean that AMIP-II differences are not caused to a significant degree by differences in their respective LSMs, rather it limits the potential role of the land surface to non-surface energy balance components, or components (such as carbon) that are not considered here.  相似文献   

16.
陈受钧  郑良杰 《气象》1987,13(12):8-12
将非平衡风分成两部分:(1)非平街风的旋度部分(?)′_R和(2)非平衡风的散度部分(?)′_D。在产生暴雨的次天气尺度系统中,这两种非平衡风具有同样重要的作用。所以在有限区域细网格模式的初值化中,不能只考虑散度风,即使用通常称为“散度初值化”的方案,而且要考虑非平衡风的旋度部分。根据散度方程分析,(?)′_R是维持、调整散度场的重要因子。试验了三种风场初值化方案,结果表明,在风场初值中同时考虑(?)′_R和(?)′_D,可以明显改善模式的降水预报。  相似文献   

17.
The variability of the main components of the annual water balance (precipitation, evaporation, glacial alimentation, and dynamic water reserves in the basin) for 1935–1990 is, for the first time, determined for the area where the Zeravshan runoff is formed, higher than hydrological post Dupuli is located. Long-term data on the annual Zeravshan River runoff from an area of 10 200 km2 were derived from the measurements at Dupuli hydrological post. The other water balance components were determined with the help of computation methods. Comparison of the measured and calculated volumes of the annual runoff demonstrated that a relative difference between them is systematic, and as a whole for a computation period it is in the interval from ?0.31 to ?4.78%. The annual balance of accumulation and thawing of solid precipitation on glaciers and in the extraglacial area is also determined in the Zeravshan River basin. A new method for computing and mapping spatial variability of the maximum snowline altitude is developed.  相似文献   

18.
We used the technique of expanded General Circulation Model (GCM) downscalingto derive time series of daily weather for the analysis of potential climaticchange impact on a river catchment in Northern Germany. The derived timeseries was then fed into a spatially distributed hydrological model tosimulate various water balance components and river discharge. All componentsof this modelling approach are known to provide fairly accurate results undernormal (current) climatic conditions. Hydrological time series, theirstatistics and spatial patterns of various water balance components, resultingfrom a `business-as-usual' emission scenario, were analysed. The simulationresults showed that if everything apart from climate is held constant, asignificant increase in river discharge may be expected in the coming decadesas a consequence of increased rainfall amounts. Although the modellingapproach provides an operational way of performing watershed climate changeimpact studies, many uncertainties still have to be considered.  相似文献   

19.
植被冠层截留对地表水分和能量平衡影响的数值模拟   总被引:3,自引:1,他引:2  
尹伊  陈海山 《气象科学》2013,33(2):119-129
利用NCAR_CLM4.0模式,通过有无植被冠层截留的试验对比分析,讨论了植被冠层截留对全球陆面水分和能量平衡产生的潜在影响.结果表明:就全球水分平衡而言,不考虑植被冠层截留时,全球平均土壤总含水量、表面径流和次表面径流增加,蒸散发减少.空间分布特征表明,低纬地区各水分平衡分量全年维持较高的差值分布,并随季节变化沿赤道南北振荡;北半球中高纬高值区有春季扩张、夏季极盛、秋冬季撤退的趋势.冠层截留消失后冠层蒸发的消失是蒸散发减弱的主要原因.对于能量平衡而言,不考虑冠层截留时,全球感热通量增加,冠层感热的增加明显大于地面感热的减少;潜热减少.此外,不同植被类型对不考虑冠层截留后产生的响应存在明显差异.  相似文献   

20.
Summary In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine (Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast.Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol/(m2day) for the tree needles and at 100 mmol/(m2day) for the understory. Carbon gain was suggested by the modelling analysis to remain relatively constant during the HartX period, while water use efficiency in carbon fixation increased with decreasing vapor pressure deficit. Biologically- and micrometeorologically-based estimates of stand water flux showed good general agreement with variation of up to 20% that reflects both errors due to the inherent assumptions associated with different methods as well as natural spatial variability in fluxes. The various methods support a reliable estimate of average ET from this homogeneous canopy during HartX of about 2.6 mm/day (a maximum of about 3.1 mm/day) with an insignificant decreasing trend in correlation with decreasing vapor pressure deficit and possibly soil moisture.Findings during HartX were embedded in local scale heterogeneity with greater roughness over the forest and much higher ET over the surrounding agricultural fields which results in weak but clearly existant circulation patterns. A variety of measurements were continued after the HartX campaign. They allow us to extend our findings for six months with changing environmental conditions, including shortage of soil moisture. Hydrological estimates of soil water extractions and micrometeorological estimates of ET by the one-propeller eddy covariance (OPEC) system were in very good agreement, supporting the use of this robust eddy covariance energy balance technique for long-term monitoring.With 5 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号