首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We investigate the impact of 1/8°, 1/16°, 1/32°, and 1/64° ocean model resolution on model–data comparisons for the Gulf Stream system mainly between the Florida Straits and the Grand Banks. This includes mean flow and variability, the Gulf Stream pathway, the associated nonlinear recirculation gyres, the large-scale C-shape of the subtropical gyre and the abyssal circulation. A nonlinear isopycnal, free surface model covering the Atlantic from 9°N to 47°N or 51°N, including the Caribbean and Gulf of Mexico, and a similar 1/16° global model are used. The models are forced by winds and by a global thermohaline component via ports in the model boundaries. When calculated using realistic wind forcing and Atlantic model boundaries, linear simulations with Munk western boundary layers and a Sverdrup interior show two unrealistic mean Gulf Stream pathways between Cape Hatteras and the Grand Banks, one proceeding due east from Cape Hatteras and a second one continuing northward along the western boundary until forced eastward by the regional northern boundary. The northern pathway is augmented when a linear version of the upper ocean global thermohaline contribution to the Gulf Stream is added as a Munk western boundary layer. A major change is required to obtain a realistic pathway in nonlinear models. Resolution of 1/8° is eddy-resolving but mainly gives a wiggly version of the linear model Gulf Stream pathway and weak abyssal flows except for the deep western boundary current (DWBC) forced by ports in the model boundaries. All of the higher resolution simulations show major improvement over the linear and 1/8° nonlinear simulations. Additional major improvement is seen with the increase from 1/16° to 1/32° resolution and modest improvement with a further increase to 1/64°. The improvements include (1) realistic separation of the Gulf Stream from the coast at Cape Hatteras and a realistic Gulf Stream pathway between Cape Hatteras and the Grand Banks based on comparisons with Gulf Stream pathways from satellite IR and from GEOSAT and TOPEX/Poseidon altimetry (but 1/32° resolution was required for robust results), (2) realistic eastern and western nonlinear recirculation gyres (which contribute to the large-scale C-shape of the subtropical gyre) based on comparisons with mean surface dynamic height from the generalized digital environmental model (GDEM) oceanic climatology and from the pattern and amplitude of sea surface height (SSH) variability surrounding the eastern gyre as seen in TOPEX/Poseidon altimetry, (3) realistic upper ocean and DWBC transports based on several types of measurements, (4) patterns and amplitude of SSH variability which are generally realistic compared to TOPEX/Poseidon altimetry, but which vary from simulation to simulation for specific features and which are most realistic overall in the 1/64° simulation, (5) a basin wide explosion in the number and strength of mesoscale eddies (with warm core rings (WCRs) north of the Gulf Stream, the regional eddy features best observed by satellite IR), (6) realistic statistics for WCRs north of the Gulf Stream based on comparison to IR analyses (low at 1/16° resolution and most realistic at 1/64° resolution for mean population and rings generated/year; realistic ring diameters at all resolutions), and (7) realistic patterns and amplitude of abyssal eddy kinetic energy (EKE) in comparison to historical measurements from current meters.  相似文献   

2.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and 70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

3.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   

4.
A primitive equation ocean circulation model in nonlinear terrain-following coordinates is applied to a decadal-length simulation of the circulation in the North Atlantic Ocean. In addition to the stretched sigma coordinate, novel features of the model include the utilization of a weakly dissipative, third-order scheme for tracer advection, and a conservative and constancy-preserving time-stepping algorithm. The objectives of the study are to assess the quality of the new terrain-following model in the limit of realistic basin-scale simulations, and to compare the results obtained with it against those of other North Atlantic models used in recent multi-model comparison studies.The new model is able to reproduce many features of both the wind-driven and thermohaline circulation, and to do so within error bounds comparable with prior model simulations (e.g., CME and DYNAMO). Quantitative comparison with comparable results obtained with the Miami Isopycnic Coordinate Model (MICOM) show our terrain-following solutions are of similar overall quality when viewed against known measures of merit including meridional overturning and heat flux, Florida Straits and Gulf Stream transport, seasonal cycling of temperature and salinity, and upper ocean currents and tracer fields in the eastern North Atlantic Basin. Sensitivity studies confirm that the nonlinear vertical coordinate contributes significantly to model fidelity, and that the global inventories and spatial structure of the tracer fields are affected in important ways by the choice of lateral advection scheme.  相似文献   

5.
The inter-basin teleconnection between the North Atlantic and the North Pacific ocean–atmosphere interaction is studied using a coupled ocean–atmosphere general circulation model. In the model, an idealized oceanic temperature anomaly is initiated over the Kuroshio and the Gulf Stream extension region to track the coupled evolution of ocean and atmosphere interaction, respectively. The experiments explicitly demonstrate that both the North Pacific and the North Atlantic ocean–atmosphere interactions are intimately coupled through an inter-basin atmospheric teleconnection. This fast inter-basin communication can transmit oceanic variability between the North Atlantic and the North Pacific through local ocean-to-atmosphere feedbacks. The leading mode of the extratropical atmospheric internal variability plays a dominant role in shaping the hemispheric-scale response forced by oceanic variability over the North Atlantic and Pacific. Modeling results also suggest that a century (two centuries) long observations are necessary for the detection of Pacific response to Atlantic forcings (Atlantic response to Pacific forcing).  相似文献   

6.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ∼70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

7.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

8.
 We investigate the dependence of surface fresh water fluxes in the Gulf Stream and North Atlantic Current (NAC) area on the position of the stream axis which is not well represented in most ocean models. To correct this shortcoming, strong unrealistic surface fresh water fluxes have to be applied that lead to an incorrect salt balance of the current system. The unrealistic surface fluxes required by the oceanic component may force flux adjustments and may cause fictitious long-term variability in coupled climate models. To identify the important points in the correct representation of the salt balance of the Gulf Stream a regional model of the northwestern part of the subtropical gyre has been set up. Sensitivity studies are made where the westward flow north of the Gulf Stream and its properties are varied. Increasing westward volume transport leads to a southward migration of the Gulf Stream separation point along the American coast. The salinity of the inflow is essential for realistic surface fresh water fluxes and the water mass distribution. The subpolar–subtropical connection is important in two ways: The deep dense flow from the deep water mass formation areas sets up the cyclonic circulation cell north of the Gulf Stream. The surface and mid depth flow of fresh water collected at high northern latitudes is mixed into the Gulf Stream and compensates for the net evaporation at the surface. Received: 19 September 2000 / Accepted: 5 February 2001  相似文献   

9.
利用麻省理工学院海洋环流模式研究了风应力输入到海洋中的能量的气候变率特征。结果表明:风应力输入到海洋中的能量对气候变化有显著的响应。在北大西洋涛动(North Atlantic Oscillation,NAO)正位相的年份,风应力输入到海洋中的能量的大值区北移且加强,主要由于暴风路径的北移和天气尺度大气扰动的加强导致;同样,在南半球环状模(Southern Annular Mode,SAM)正位相年份输入到南大洋的能量大值区南移并加强,且输入到南极大陆沿岸流中的能量也有显著增加。经验正交函数分解分析结果表明:NAO主导了风应力输入到北大西洋区域的能量变化。SAM解释了南大洋区域风应力输入能量的第一模态,第二、三模态解释了受ENSO(El Niňo-Southern Oscillation)影响的情况。最近几十年,在南大洋区域,风应力及其输入能量的年代际变化都有所增强,而在北半球的中高纬度区域有所下降。  相似文献   

10.
Recent studies have indicated that the multidecadal variations of the Atlantic Warm Pool (AWP) can induce a significant freshwater change in the tropical North Atlantic Ocean. In this paper, the potential effect of the AWP-induced freshwater flux on the Atlantic Meridional Overturning Circulation (AMOC) is studied by performing a series of ocean–sea ice model experiments. Our model experiments demonstrate that ocean response to the anomalous AWP-induced freshwater flux is primarily dominated by the basin-scale gyre circulation adjustments with a time scale of about two decades. The positive (negative) freshwater anomaly leads to an anticyclonic (cyclonic) circulation overlapping the subtropical gyre. This strengthens (weakens) the Gulf Stream and the recirculation in the interior ocean, thus increases warm (cold) water advection to the north and decreases cold (warm) water advection to the south, producing an upper ocean temperature dipole in the midlatitude. As the freshwater (salty water) is advected to the North Atlantic deep convection region, the AMOC and its associated northward heat transport gradually decreases (increases), which in turn lead to an inter-hemispheric SST seesaw. In the equilibrium state, a comma-shaped SST anomaly pattern develops in the extratropical region, with the largest amplitude over the subpolar region and an extension along the east side of the basin and into the subtropical North Atlantic. Based on our model experiments, we argue that the multidecadal AWP-induced freshwater flux can affect the AMOC, which plays a negative feedback role that acts to recover the AMOC after it is weakened or strengthened. The sensitivity of AMOC response to the AWP-induced freshwater forcing amplitude is also examined and discussed.  相似文献   

11.
The Gulf Stream, one of the strongest currents in the world, transports approximately 31 Sv of water (Kelly and Gille, 1990, Baringer and Larsen, 2001, Leaman et al., 1995) and 1.3 × 1015 W (Larsen, 1992) of heat into the Atlantic Ocean, and warms the vast European continent. Thus any change of the Gulf Stream could lead to the climate change in the European continent, and even worldwide (Bryden et al., 2005). Past studies have revealed a diminished Gulf Stream and oceanic heat transport that was possibly associated with a southward migration of intertropical convergence zone (ITCZ) and may have contributed to Little Ice Age (AD ∼1200 to 1850) in the North Atlantic (Lund et al., 2006). However, the causations of the Gulf Stream weakening due to the southward migration of the ITCZ remain uncertain. Here we use satellite observation data and employ a model (oceanic general circulation model – OGCM) to demonstrate that the Brazilian promontory in the east coast of South America may have played a crucial role in allocating the equatorial currents, while the mean position of the equatorial currents migrates between northern and southern hemisphere in the Atlantic Ocean. Northward migrations of the equatorial currents in the Atlantic Ocean have little influence on the Gulf Stream. Nevertheless, southward migrations, especially abrupt large southward migrations of the equatorial currents, can lead to the increase of the Brazil Current and the significant decrease of the North Brazil Current, in turn the weakening of the Gulf Stream. The results from the model simulations suggest the mean position of the equatorial currents in the Atlantic Ocean shifted at least 180–260 km southwards of its present-day position during the Little Ice Age based on the calculations of simple linear equations and the OGCM simulations.  相似文献   

12.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   

13.
W. Cheng  R. Bleck  C. Rooth 《Climate Dynamics》2004,22(6-7):573-590
A century scale integration of a near-global atmosphere–ocean model is used to study the multi-decadal variability of the thermohaline circulation (THC) in the Atlantic. The differences between the coupled and two supplementary ocean-only experiments suggest that a significant component of this variability is controlled by either a collective behavior of the ocean and the atmosphere, particularly in the form of air-sea heat exchange, or sub-monthly random noise present in the coupled system. Possible physical mechanisms giving rise to the mode of this THC variability are discussed. The SST anomaly associated with the THC variability resembles an interdecadal SST pattern extracted from observational data, as well as a pattern associated with the 50–60 year THC variability in the GFDL coupled model. In each case, a warming throughout the subpolar North Atlantic but concentrated along the Gulf Stream and its extension is indicated when the THC is strong. Concomitantly, surface air temperature has positive anomalies over the warmer ocean, with the strongest signal located downwind of the warmest SST anomalies and intruding into the western Eurasian Continent. In addition to the thermal response, there are also changes in the atmospheric flow pattern. More specifically, an anomalous northerly wind develops over the Labrador Sea when the THC is stronger than normal, suggesting a local primacy of the atmospheric forcing in the thermohaline perturbation structure.  相似文献   

14.
Simulated variability of the Atlantic meridional overturning circulation   总被引:11,自引:3,他引:11  
To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1–3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC yields a NAO-like pattern with intensified Icelandic low and Azores high, and a warming of 0.25–0.5 °C of the central North Atlantic sea-surface temperature (SST). The reanalysis forced simulations indicate a coupling between the Labrador Sea Water production rate and an equatorial Atlantic SST index in accordance with observations. This coupling is not identified in the coupled simulation.  相似文献   

15.
Interannual-to-interdecadal ocean-atmosphere interaction in midlatitudes is studied using an idealized coupled model consisting of eddy resolving two-layer quasi-geostrophic oceanic and atmospheric components with a simple diagnostic oceanic mixed layer. The model solutions exhibit structure and variability that resemble qualitatively some aspects of the observed climate variability over the North Atlantic. The atmospheric climatology is characterized by a zonally modulated jet. The single-basin ocean climatology consists of a midlatitude double jet that represents the Gulf Stream and Labrador currents, which are parts of the subtropical and subpolar gyres, respectively. The leading mode of the atmospheric low-frequency variability consists predominantly of meridional displacements of the zonal jet, with a local maximum over the ocean. The first basin-scale mode of sea-surface temperature has a red power spectrum, is largely of one polarity and bears qualitative similarities with the observed interdecadal mode identified by Kushnir. A warm sea-surface temperature anomaly is accompanied by anomalously low atmospheric pressure, an intensified model Gulf Stream and a weakened Labrador current. This mode is found not to be affected significantly by oceanic coupling. In the western part of the basin, this sea-surface temperature pattern is shown to be forced by the slowest components of the surface-wind anomaly through a delayed modulation of the baroclinic time-dependent boundary currents which advect mean SST, with synchronous variations in the two oceanic jets. The response in the east is found to be dominated by local atmospheric forcing. Basin-scale intrinsic oceanic variability consists of a damped oceanic oscillatory mode in the baroclinic flow field that is excited by the atmospheric noise. Its period is around 5.5 years, but it has a negligible influence on the evolution of sea-surface temperature. Important for this mode's excitation is the meridional position of the atmospheric center of action relative to the ocean gyres.  相似文献   

16.
Model studies point to enhanced warming and to increased freshwater fluxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined effect of increased freshwater input to the Arctic Ocean and Arctic warming--the latter manifested as a gradual melting of the Arctic sea ice--is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runoff, and a third more extreme case, where the river runoff is five times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5-2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift.Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensified Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.  相似文献   

17.
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.  相似文献   

18.
In this paper, the first version of a new Arctic Ocean circulation and thermodynamic sea-ice model is presented by the authors based on the framework of a twenty-layer World Oceanic general circulation model developed by Zhang et al. in 1994, The model’s domain covers the Arctic Ocean and Greenland-Norwegian Seas with the horizon-tal resolution of 200 km × 200 km on a stereographic projection plane. In vertical, the model uses the Eta-coordinate (Sigma modified to have quasi-horizontal coordinate surfaces) and has ten unevenly-spaced layers to cover the deep-est water column of 3000 m. Two 150-year integrations of coupling the ocean circulation model with the sea-ice model have been performed with seasonally cyclic surface boundary conditions. The only difference between the two experiments is in the model’s geography. Some preliminary analyses of the experimental results have been done fo-cused on the following aspects: (1) surface layer temperature, salinity and current; (2) the "Atlantic Layer"; (3) sea-ice cover and its seasonal variation. In comparison with the available observational data, these results are accept-able with reasonable accuracy.  相似文献   

19.
参照Griffies et al.(2009)提出的海洋—海冰耦合模式参考试验(Coordinated Ocean-ice Reference Experiments,COREs),设计了一个800年积分的数值试验,对一个质量严格守恒的压力坐标海洋环流模式(Pressure Coordinate Ocean Model,PCOM1.0)的基本模拟性能进行了评估,并与观测资料和再分析资料进行了对比。结果表明,PCOM1.0模拟的温盐场和基本流场与COREs模式的模拟水平基本接近。其中,模拟的大西洋经向翻转流在45°N附近达到18 Sv(1 Sv=106 m3 s-1),与观测估计值接近;对海表面温度的模拟误差主要集中在北太平洋黑潮区和北大西洋湾流区等中高纬度急流区;模拟的热带太平洋温跃层过于深厚;模拟的经德雷克海峡的体积输送达130 Sv,比大部分COREs模式及再分析资料都更接近于观测估计值。  相似文献   

20.
利用全球海洋—大气快速耦合模式(Fast Ocean-Atmosphere Model,FOAM),采用模式中的初值方法,研究了湾流区海温再现过程及其对北半球大气环流和气候的影响。FOAM模式很好地模拟了北大西洋湾流区的海温"再现"过程,模式中海面热通量异常与SST异常表现出不同步的响应特征。海面热通量异常在初冬季节达到最大值,而SST异常滞后,在冬季晚期达到最大值,从而在初冬和晚冬对北半球大气环流造成不同的影响。初冬季节北半球大气环流主要受海洋热通量异常的强迫,在北大西洋和北太平洋上空呈现相当正压的异常低压槽响应,北极地区为异常高压脊,类似北极涛动的负位相,可能造成欧洲南部和北非大陆气温偏高,亚洲大陆气温偏低。而晚冬季节北半球大气环流主要受SST异常的驱动,在北大西洋和北太平洋上空表现为相当正压的异常高压脊响应,北极地区为异常低压槽,类似北极涛动的正位相,可能造成欧洲南部和北非大陆气温偏低,亚洲大陆气温偏高,中国东部降水异常偏多30%左右。北太平洋大气环流的异常由北大西洋湾流区海洋热通量和SST异常强迫下游大气环流所激发,进一步通过Rossby驻波的能量频散东传至北太平洋而造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号