首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
气团来源对瓦里关地区颗粒物数谱分布的影响   总被引:5,自引:1,他引:4  
通过对2005年8月到2007年5月在瓦里关全球本底站观测的气溶胶数谱分布资料和同期后向轨迹资料分析,发现气团来源对瓦里关地区颗粒物的数浓度及其谱分布有显著影响.气团起源于瓦里关东北部地区或者途径东北部地区,传输路径较短,传输速度相对较慢,大气中出现较高数浓度的爱根核模态颗粒物;气团来源于瓦里关西部或者两北地区时,传输路径较长,传输速度较快,大气中一般出现较高浓度的核模态颗粒物.  相似文献   

2.
基于2017年1月4日至7日成都市一次重霾污染过程的系留汽艇探测的低层大气气象要素和大气颗粒物垂直探空加密观测资料,分析了大气边界层结构及气溶胶垂直分布。结果表明,此次重霾污染期间,大气边界层昼夜变化特征基本消失。稳定边界层结构出现25次,对流边界层结构仅出现3次,大气边界层结构趋于稳定,边界层高度普遍在700 m以下。霾污染发生、维持及消散阶段大气边界层气溶胶垂直结构具有明显差异。霾污染发生阶段,大气边界层气溶胶粗、细粒子主要集中在300m高度以下,近地面层大气气溶胶粒子累积触发霾污染事件;霾维持阶段,大气颗粒物粒子浓度数垂直方向趋于一致,大气边界层稳定结构中存在强的大气垂直混合作用;在霾消散阶段,较高处的气溶胶粒子浓度最先下降,且下降幅度最大,表明对流层自由大气作用对霾污染消散具有影响。大气边界层风速的增大加剧了大气传输扩散。温度与大气颗粒物浓度在近地层呈负相关关系,在100m高度以上呈正相关关系。大气边界层低层偏冷,高层偏暖的稳定大气热力层结减弱了大气污染物的垂直扩散。相对湿度的增加有利于气溶胶粒子的吸湿增长和液相化学反应,加剧了霾污染。  相似文献   

3.
北极黄河站秋季气团传输影响下大气气溶胶数谱分布特征   总被引:2,自引:2,他引:0  
2013 年9月在北极黄河站开展了气溶胶数谱(10~400nm)的短期观测实验。数浓度小时平均值主要出现在300~400cm-3,平均值为350cm-3,高于新奥尔松Zeppelin 全球大气本底站及环北极海洋大气7-9月航测报道的浓度。大气气溶胶的三个模态(核模态、爱根核模态和积聚模态)数浓度平均分别为35、122和193cm-3。观测期间没有发生新粒子生成事件,平均数谱分布呈现双模态的分布特征,模态峰值分别出现在30nm和115nm,由积聚模态主导。平均数谱分布的几何中值粒径出现在约100~110nm。从单颗粒分析结果来看,观测期间黄河站地区大气气溶胶主要以海盐气溶胶为主,但是在来自挪威海域和北欧大陆的气团影响下,也观测到煤烟颗粒、富硫颗粒物和含碳颗粒物等人为气溶胶。  相似文献   

4.
河套干旱地区夏季边界层结构特征观测分析   总被引:2,自引:0,他引:2  
崔洋  常倬林  桑建人  左河疆 《冰川冻土》2015,37(5):1257-1267
利用2013年夏季7月爱尔达K/LLX802J型机动式边界层风廓线雷达获取的三维风场资料和银川站高空气象探测资料,对河套干旱地区夏季边界层日变化特征进行了分析.结果表明:爱尔达K/LLX802J型机动式风廓线雷达能较好的反映并分辨出夏季河套干旱地区边界层内大气湍流和风场的演变过程.夏季7月河套干旱地区边界层高度白天平均为2127.2 m,夜间平均为1760.7 m,白天边界层高度比夜间平均高366.5 m.河套干旱区夏季地表非绝热加热对边界层的影响主要集中在800 m以下,800~2000 m高度边界层则主要受昼夜交替和大尺度天气系统的影响.夏季7月河套干旱地区边界层风速在300 m以下随高度增加而增大,离地500 m以下边界层易在北京时间07:00-11:00和18:00-21:00时段发生风速切变;300 m以下边界层白天盛行西南偏南风、夜间盛行南风,300~2000 m高度边界层白天和夜间均盛行东南风;离地300 m以下边界层易在夜间21:00-23:00时出现风向切变.夏季7月白天河套干旱地区边界层大气垂直速度在300 m高度以下随高度增加而增大,由0.3 m·s-1增大到0.6 m·s-1,夜间边界层大气垂直速度在200 m高度以下随高度增大而增大;300 m高度以上边界层大气垂直速度无论昼夜随高度变化均较小.  相似文献   

5.
北京上空大气臭氧垂直分布的特征   总被引:10,自引:1,他引:9  
利用我国自行研制的探空仪和地面接收设备首次较系统地获得了北京地区连续一年(2001年 3月至2002年 2月)的大气臭氧垂直分布资料。结果分析表明:①北京地区上空臭氧浓度极大值的季节均值的变化范围为15.1~16.7 mPa,其高度位于20.7~25.1km之间,极小值的季节均值的变化范围为 2.0~2.8 mPa,其高度在对流层顶附近。②边界层和平流层下部是臭氧浓度变化的活跃区域,并具有明显的季节变化,在边界层内夏季臭氧积分浓度高于冬季相应值的 1.7倍之多,而在平流层下部,冬季臭氧积分浓度则高于夏季的相应值。夏季边界层中臭氧浓度偏高,表明臭氧是北京地区夏季重要的污染气体之一。③北京上空臭氧垂直廓线的形态呈多样性,夏秋季节以单峰为主,冬春季节经常出现双峰和多峰结构;次峰出现的区域一般在10~18km高度范围内。  相似文献   

6.
基于南昌温室气体站2018年12月~2020年11月连续在线监测的CH4浓度数据,对大气CH4浓度变化及区域输送进行研究,结果表明:研究期间南昌站大气CH4的平均浓度为2389×10-9,CH4浓度日变化呈现夜间高、白昼低的特征,夏、秋季大气CH4浓度高于冬、春季,春季振幅最小(404×10-9),秋季振幅最大(621×10-9)。大气CH4浓度年内变化呈现双峰曲线, 3月、11月为谷值, 9月、12月为峰值。2020年大气CH4浓度比2019年同期低。ENE风向的CH4浓度较高,在夏季高达3064×10-9。混合单粒子拉格朗日综合轨迹(HYPLIT)模型聚类分析表明,春、秋季大气CH4浓度主要受中长距离气团输送的影响,夏季主要受短距离气团输送的影响,冬季受短距离和长距离气团输送的共同影响。  相似文献   

7.
不同天气类型广东大气超级站细粒子污染特征初步研究   总被引:5,自引:0,他引:5  
2012年5月至7月期间,以广东大气超级监测站为观测平台,利用单颗粒气溶胶质谱仪(SPAMS)和其他多种环境监测仪器对大气污染现象进行高时间分辨的长期连续观测。以能见度和相对湿度为参考,将天气类型划分为2次灰霾、1次暴雨和多次晴朗天气过程。观测结果表明,SPAMS捕获的颗粒物数浓度与PM2.5和PM1的相关性(R2)分别达到0.538和0.448,呈现出一定的相关性。大气颗粒物浓度在不同天气条件下,浓度变化较大,其中,灰霾天气下,PM2.5和PM1浓度最大小时均值分别达到0.132 ng/m3和0.094 ng/m3。观测结果表明,粒径处于600~800 nm的细颗粒物对该区域的灰霾形成过程起了最为关键的作用。该地区的大气颗粒物类型主要可分为7种:元素碳(EC)、有机碳(OC)、元素-有机碳混合(ECOC)、大分子有机碳(HMOC)、海盐(Na-K)、富钾颗粒(K-rich)和富铅颗粒(Pb-rich)。灰霾天气,各类型颗粒物数量浓度均有一定程度的增加,其中以EC和K-rich的增加最为明显。分析表明,第一次灰霾主要是由于大气光化学反应起到主导作用,而生物质燃烧又增大了灰霾程度;第二次灰霾过程,生物质燃烧产生的影响更大。  相似文献   

8.
水溶性有机氮(WSON)在大气化学和气候变化中具有重要作用,目前鲜有针对WSON粒径分布的研究。本研究利用大流量采样器在2014年9月至2015年7月期间采集了广州市各个季节PM_(10)中不同粒径段(0.49μm、0.49~0.95μm、0.95~1.5μm、1.5~3.0μm、3.0~7.2μm、7.2~10μm)大气颗粒物样品共100个,分析了其中的水溶性总氮(WSTN)、WSON以及水溶性无机氮(WSIN)含量。结果表明,各个粒径段中WSON的浓度呈现相似的季节变化特征,秋、冬季较高,春、夏季较低。WSON主要分布在细颗粒物上,PM_3中WSON的季节平均浓度在1.15~2.62μg/m~3范围内,占PM_(10)中WSON总量的63%~71%。WSON的粒径分布呈现单峰分布,主要富集在0.49~1.5μm粒径段。主成分分析/绝对主成分得分(PCA/APCS)分析表明,0.49μm颗粒物上的WSON主要来源于本地化石燃料的燃烧排放;0.49~0.95μm颗粒物的WSON主要来源于建筑扬尘和光化学氧化二次生成过程;0.95~1.5μm颗粒物的WSON主要来源于光化学氧化二次生成过程。研究结果增加了目前对于WSON粒径分布特征和来源的认识。  相似文献   

9.
长江中下游六省大气甲烷柱浓度时空分布   总被引:2,自引:0,他引:2  
甲烷(CH4)是造成气候变暖的主要温室气体之一。为了了解长江中下游水稻种植区CH4浓度的分布情况,本次研究基于温室气体观测卫星(greenhouse gases observing satellite,GOSAT)和大气红外探测仪(atmospheric infrared sounder,AIRS)卫星反演的数据产品,对我国长江中下游六省大气CH4柱浓度的时空分布特征进行了研究。研究结果表明,由GOSAT反演的长江中下游六省大气CH4浓度呈逐年增长趋势,其年均浓度由2011年的1817×10?9增长至2018年的1875×10?9,高于东三省、华北平原和全国平均水平。区域平均年增长量为8.2×10?9 a?1。各省年际增长幅度略有差异,纬度偏低的江西、湖南和浙江三省大气CH4浓度高且增长量偏大,纬度偏高的湖北、安徽和江苏三省大气CH4浓度略低且增长量偏小。长江中下游六省大气CH4呈现较强的季节变化特征,湖北、湖南、江西和浙江峰值出现在9月,安徽、江苏峰值出现在8月。垂直方向上长江中下游六省CH4浓度随气压降低,浓度逐渐减小,呈现出明显的季节变化特征,近地面层GOSAT反演的最高值出现在夏季,最低值出现在春季;高层最高值出现在秋季,最低值出现在春季。AIRS反演的大气CH4浓度空间分布上北高南低,与GOSAT反演结果不一致,可能由于AIRS主要反映了对流层中层大气状况而GOSAT更多的反映了近地面层大气CH4的变化。其垂直方向上呈现高度越高,浓度越低,不同高度上秋季浓度均最高。  相似文献   

10.
北京市大气颗粒物中全氟烷基化合物的粒径分布特征   总被引:2,自引:1,他引:1  
人为排放的持久性有机污染物倾向于在细级大气颗粒物中富集,但目前国内外关于大气颗粒物中全氟烷基化合物(PFASs)粒径分布在不同国家地区有显著差异,而在我国北京地区PFASs在不同粒径大气颗粒物中的富集能力尚不清楚。本文采用五级大流量主动分级采样器采集了北京市大气颗粒物样品,利用超声萃取结合高效液相色谱-电喷雾负电离源串联质谱测定PFASs含量,探讨了该地区大气颗粒物中PFASs的浓度水平和粒径分布特征,以及大气颗粒物浓度变化对PFASs浓度变化的影响。结果表明:研究区∑PFASs范围为10. 1~62. 9 pg/m3,76. 4%~83. 8%的PFASs集中分布在PM2. 5颗粒物中,其中含量较高的PFOA、PFNA和PFDA在0. 25μm细颗粒物中占比最高,分别为26. 3%~43. 7%、30. 3%~68. 6%和30. 6%~49. 7%; PFOS在0. 25μm细颗粒物中没有检出,主要分布在1~2. 5μm和0. 25~1μm颗粒物中。此外,研究发现北京市霾天大气颗粒物中∑PFASs为晴天的3. 5倍,且不同粒径大气颗粒物浓度变化对PFASs各化合物表现出不同的富集能力,其中PFOA、PFOS、PFNA和PFDA等中链PFASs更易富集。  相似文献   

11.
2005年4月至2006年3月,利用大流量采样器采集青岛大气中气相和颗粒相样品,并分析气相和颗粒相中的有机氯农药(OCPs).结果表明,青岛大气中α-HCH、y-HCH、HCB、o,p′-DDT、p,p′-DDT和p,p ′-DDE的浓度平均值分别为(78±41) pg/m3、(289±236) pg/m3、(221±186) pg/m3、(81±62) pg/m3、(54±49) pg/m3和(60±44)pg/m3,远低于广州、天津等城市.大气中的有机氯农药浓度在一定程度上受温度影响,但相关系数并不高(R2<0.4),斜率较缓,表明大气的长距离迁移对其浓度也有一定的影响.用后向气流轨迹法对气团来源追踪,发现当青岛受到东亚沙尘暴的影响时,有机氯农药的浓度升高,而当有来自黄海较干净的气团到达青岛时,大气中有机氯农药的浓度明显偏低.  相似文献   

12.
珠峰地区夏季大气边界层结构初步分析   总被引:6,自引:2,他引:4  
利用中国科学院珠穆朗玛峰大气与环境综合观测研究站2007年7、 8月的部分无线电探空资料和风温廓线仪资料, 分析了珠峰地区夏季大气边界层结构. 结果表明: 珠峰地区夏季边界层高度日变化较大, 气温日变化明显. 下午和傍晚可能因为冰川风的存在, 多为偏南风, 风力相对较大. 珠峰地区风速时空变化较大, 特别是下午, 在上空大约1 800 m到2 300 m处风速多为随高度增大, 再往上又减小, 而且此处多为偏西风和偏东风. 这可能与大尺度的大气环流有关, 受地形和冰川影响相对小得多.  相似文献   

13.
细颗粒物(PM_(2.5))对气候、空气质量和人体健康具有显著影响,水溶性无机离子是PM_(2.5)主要成分。在2018-01-24至2018-02-20期间,宁波地区经历了一系列低温和PM_(2.5)浓度较高的天气过程,利用在线离子色谱(MARGA)和颗粒物化学组分监测仪(ACSM)监测宁波气溶胶的无机离子,研究了PM_(2.5)和亚微米细颗粒物(PM_(1.0))中硫酸根(SO_4~(2-))、硝酸根(NO_3~-)和铵根(NH_4~+)(三者统称为SNA)的变化特征。结果表明,SNA的质量浓度均与PM_(2.5)有明显正相关;随PM_(2.5)质量浓度的增加,SO_4~(2-)当量浓度(摩尔浓度×所带电荷数)百分比呈现减少趋势,而NO_3~-百分比呈现增加趋势;NH_4~+百分比未呈现明显变化趋势;NH_4~+主要分布在1.0μm以下粒径的颗粒物中,SO_4~(2-)主要分布在1.0~2.5μm的粒径的颗粒物中;PM_(2.5)中NH_4~+当量浓度百分比低于PM_(1.0)。0~1.0μm粒径段的颗粒物中NH_4~+可以完全中和SO_4~(2-)和NO_3~-,形成硫酸铵和硝酸铵,还可形成其他形态的铵盐;1.0~2.5μm粒径段的颗粒物中NH_4~+不能完全中和SO_4~(2-)及NO_3~-,NH_4~+当量浓度低于SO_4~(2-)和NO_3~-两者当量浓度之和,SNA主要以硝酸铵和硫酸铵形式存在,还存在其他形态的硝酸盐或硫酸盐。本次工作通过对PM_(2.5)和PM_(1.0)中SNA存在形式及其在不同粒径中主导成分的研究,为宁波市大气污染特征的了解提供科学依据。  相似文献   

14.
为探索喀斯特高原峡谷地区高位旱洞内CO2来源及其空间分布特征,于2015年1月至2015年7月按月实施定位监测,对贵州织金洞洞穴CO2浓度和洞穴水、土壤CO2浓度和土壤水以及大气降水、山顶泉水进行监测。结果表明:(1)织金洞上覆土壤CO2浓度是大气CO2浓度的11~17倍,是洞穴CO2的4~7倍。织金洞洞内CO2的来源,横向上主要来自于气流的交换、游客的呼吸作用;垂直方向上主要来自于洞穴上方延伸入基岩中植物根系的呼吸作用,洞穴上覆基岩溶隙、溶管中进入洞穴内的大气CO2,地下河水脱气以及洞穴滴水碳酸钙的沉积释放的CO2。(2)织金洞为多进口洞,CO2浓度插值空间分布呈现两端低中间高的空间分布特征,同时在1 200×10-6~1 400×10-6高值区范围内出现800×10-6~1 000×10-6低值区特征。整体上,洞穴CO2随着进、出洞口两端海拔向洞内升高而呈上升趋势,在洞穴中部灵霄殿达到最大值。(3)洞内水和洞外土壤水均为HCO3--Ca2+型水,大气降水、山顶泉水为SO42--Ca2+型水。在垂直迁移过程中,大气降水-山顶泉水-土壤水-洞穴水不同部位水中各化学成分(硬度、Ca2+/Mg2+、HCO3-/SO42-、PCO2、SIc)各不相同。   相似文献   

15.
同步分析了2015年1~12月份期间深圳市大气~7Be总沉降通量以及大气气溶胶中~7Be的放射性比活度,并据此计算获得大气颗粒物沉积速率。结果表明,深圳市大气~7Be的沉降通量范围为0.91~4.23 Bq/m~2×d,平均值为1.83 Bq/m~2×d;大气气溶胶沉积速率在0.15~5.10 cm/s之间,平均值为1.35 cm/s。研究发现,大气~7Be沉降通量和沉积速率均与降雨量呈显著的正相关关系,提示湿沉降是大气~7Be清除的主要机制;大气~7Be沉积速率与大气颗粒物(PM_(10)、PM_(2.5))含量呈负相关关系。  相似文献   

16.
基于2012年消融期6~9月在祁连山老虎沟12号冰川采集冰川融水径流样品,分析探讨冰川融水中粉尘颗粒物对融水理化性质的影响。结果表明,粉尘特征在消融期的变化很好地反映了冰川消融过程,融水中粉尘浓度和粒径众数在冰川强烈消融期的7月份表现为最高。粉尘体积粒径分布主要包括大气气溶胶超细颗粒(0~3.0μm,主要为PM 2.5),大气粉尘颗粒(3.0~20μm),以及局地源的粗颗粒(20~100μm);对雪冰消融释放的粉尘部分(3.0~20μm)粒径分布正态拟合结果说明,融水中粉尘颗粒物有很大部分来源于积雪中的粉尘运移所致。同时,融水中化学离子相对组成及其浓度消融期变化都与粉尘有较好的一致性,意味着粉尘对融水化学要素有重要影响。此外,pH值和电导率(EC)消融期的变化也反映了粉尘对融水物理指标的影响。在粉尘浓度较高时,融水pH值和电导率也表现出高值;融水径流中的悬移质颗粒物(SPM)浓度和溶解质固体(TDS)浓度具有较为一致的变化过程,反映了粉尘对于融水中溶解质含量也有较大影响。  相似文献   

17.
为研究冰川区大气气溶胶单颗粒物的物理化学特征,使用带能谱的扫描电镜(SEM-EDX)对2007年在天山乌鲁木齐河源1号冰川东支积累区海拔4 130m(86°49′E,43°06′N)处采集的38个气溶胶样品中的38 861个单颗粒物进行了微观形貌和元素组成的分析.结果表明:天山乌鲁木齐河源1号冰川区大气气溶胶主要以粒径在0.6~2.5μm之间的不规则的非圆形矿物颗粒为主,其中以富含Si、Ca的粘土矿物颗粒为主,与人类活动密切相关的含S颗粒物及烟尘飞灰等含量较少.这与其它沙尘源区的气溶胶特征相似,其中含Ca颗粒多于其它沙尘源区,主要受西风带的影响.气团轨迹显示,来自于西面中亚地区的高空气流影响了1号冰川区的大气环境,表明天山乌鲁木齐河源1号冰川区的气溶胶主要代表了中亚沙尘源区对流层中上部大气的本底状况.  相似文献   

18.
武小波  李全莲  贺建桥 《冰川冻土》2021,43(6):1746-1754
2005年9月下旬,在黄河源区阿尼玛卿山耶和龙冰川平衡线附近挖取了6个雪坑,固定层厚采集了89个雪冰样品,分析了样品的δ18O值及不溶微粒的浓度、粒径,研究了耶和龙冰川中不溶微粒的时空分布特征及环境意义。结果表明:雪冰样品中不溶微粒浓度平均值为1.1×105个·mL-1,PM10占到总粒子的99%;以微粒数浓度为权重计算的平均粒径分布在1.1~1.8 μm之间,说明耶和龙冰川积雪中不溶微粒以细粒子为主;不溶微粒的粒度谱分布不符合正态分布规律,粒子浓度的众数出现在小粒径;微粒源区输入和大气环流强度是控制积雪中不溶微粒特征的主要因素。源区输入和风场强度均较大时,积雪中不溶微粒浓度及粒径均较大;源区输入较弱而风场强度较大时,积雪中微粒浓度有所增加,粒径增加更加显著。结合HYSPLIT-4模式研究发现,在耶和龙冰川积雪中不溶微粒的浓度及粒径随雪坑深度的变化可以反映气团强度的季节变化,夏季降水增加使微粒的季节变化更加显著。西风携带的塔克拉玛干沙漠和中亚干旱区尘埃是耶和龙冰川春、秋季节积雪中不溶微粒的重要来源。  相似文献   

19.
2012年4月份对绵阳市城郊大气PM2.5进行了连续4次采样,而后利用SEM、XRD/XRF等测试手段对采集后PM2.5颗粒物矿物特性进行了分析,并利用自然沉降法和滤膜稀释法两种方法对大气微生物浓度进行了分析。采样结果表明,通常情况下所测大气中PM2.5浓度可以达到新订《环境空气质量标准》标准的要求,且雨后明显降低,风沙天气或人为焚烧则会导致PM2.5浓度大幅升高;物相分析可知,绵阳城郊大气的矿物种类主要有石英、石膏、方解石、伊利石、高岭石等;SEM分析发现,采集的PM2.5滤膜上大多为亚微米系颗粒物,且颗粒物多数表面光滑无棱角;微生物浓度分析可知,大气中粒径≤2.5μm的微生物个数偏少,约占总数的1/100。  相似文献   

20.
本研究以取暖期和停暖后北京市主要功能区及郊区的可吸入大气颗粒物为研究对象,重点对比了市区与郊区、市区内不同功能区的PM10、PM25的浓度分布特征以及重金属元素Pb在其中的浓度分布特征。结果表明:可吸入大气颗粒物的浓度在取暖期间远高于停暖后的浓度,雾霾天气时可吸入大气颗粒物的浓度是非雾霾时的174~256倍。取暖期间,Pb在PM10中的浓度明显远高于PM25中的浓度,北京市区内Pb浓度较郊区要高,尤其是建材厂区可吸入大气颗粒物中的Pb浓度最高,商业区次之;停暖后,Pb在PM10和PM25中的浓度相当,建材厂区可吸入大气颗粒物中Pb浓度依然是功能区中最高的,但整体上郊区可吸入大气颗粒物中Pb的浓度和市区相差不大。对比分析2007年和2013年的数据,可以估算出,可吸入大气颗粒物PM10中Pb的浓度以每年978%的速度在增长,PM25中Pb的浓度以每年1145%的速度在增长。因此,北京市可吸入大气颗粒物中Pb的增长问题应引起相关部门的重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号