首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
海洋模式比较计划(OMIP)是第六次国际耦合模式比较计划(CMIP6)中的一个支撑子计划。OMIP致力于CMIP6中模式系统偏差来源及其影响这样一个重要科学问题。同时,OMIP也将在区域海平面变化和近期气候(未来10~30 a)或者年代际气候预测的相关科学问题上有重要贡献,这些问题被世界气候研究计划(WCRP)列为气候科学领域巨大挑战的科学问题。OMIP采用统一的大气外强迫数据集和通量计算方案,进行全球海洋-海冰耦合试验、示踪物试验以及生物地球化学循环试验。同时,OMIP提供了一套针对海洋变量的详细的诊断框架,这个框架既可以评估和改进模式模拟,也可以用于理解海洋-海冰过程在整个气候系统中的作用。  相似文献   

2.
使用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)开发的第三代气候海洋模式(LASG/IAP Climate system Ocean Model version 3, LICOM3.0)低分辨率版本在海洋模式比较计划(Ocean Model Intercomparison Project, OMIP)试验中的模拟数据,描述了南极绕极流(Antarctic Circumpolar Current, ACC)和南大洋经向翻转环流(Meridional Overturning Circulation, MOC)在1958~2009年的平均状态及其变化,并与已有的模式模拟结果和观测结果对比以评估LICOM模式的模拟效果。通过对比已有模式模拟数据发现,LICOM3.0模式模拟的ACC和南大洋MOC在两组OMIP试验中平均状态相仿、结果在合理范围内,但OMIP1试验中海表强迫的变化趋势较OMIP2试验中的变化更大,得到的环流输送在OMIP1试验中增长趋势也更大。  相似文献   

3.
As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.  相似文献   

4.
全球海洋模式对不同强迫场的响应   总被引:1,自引:0,他引:1  
使用中国科学院大气物理研究所研制的全球海洋环流模式(LASG/IAP Climate system Ocean Model,LICOM),通过设计三个试验,即以德国马克斯—普朗克气象研究所整理的海洋模式比较计划(OMIP)资料和美国国家海洋资料中心(NODC)发布的《世界海洋图集2009》(WOA09)资料为强迫场的试验W,用美国环境预报中心(NCEP)和国家大气研究中心(NCAR)联合推出的NCEP/NCAR再分析资料(简称NCEP资料)中的风应力资料代替试验W中的风应力资料的试验M,以及用NCEP资料中的热力强迫代替试验M中的热力强迫资料的试验N,来研究不同的热力和动力强迫场对模式的影响。三个试验的模拟结果均模拟出了水团和流场的分布型和极值区。从三个试验的结果对比可以看出,NCEP资料较弱的风应力使得试验M环流场明显偏弱,减弱了大洋内部的温盐输送,加大了深海温盐模拟结果与观测资料的偏差,但对原模式过强的南极中层水的输送有所改善。NCEP的短波辐射通量和非短波热通量弱于OMIP,且在两极区域NCEP资料的海表温度比WOA09资料最多低 4℃以上。试验N的模拟结果改善了南大洋60°S以南海区试验W 模拟的海表温度偏高问题,减小了北冰洋部分海域以及副热带大洋东部海表温度的偏差。此外,试验N高纬度较低的海表温度增强了北大西洋深水以及南极底层水的输送,因而改善了深海的温盐模拟结果。三个试验在一些关键海区得到的经向热输送在观测估计及前人模拟结果的范围中,总体上试验M的输送最弱。综合三个试验的模拟结果,可以认为OMIP风应力资料和NCEP海表温度资料更适合作为LICOM模式的强迫场。  相似文献   

5.
The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model, version f3-L(CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FGOALS-f3-L, and all these data have been published online in the Earth System Grid Federation(ESGF, https://esgf-node.llnl.gov/projects/cmip6/). The three ensembles are initialized from the 600th, 650th and 700th model year of the preindustrial experiment(piControl) and forced by the same historical forcing provided by CMIP6 from 1850 to 2014. The performance of the coupled model is validated in comparison with some recent observed atmospheric and oceanic datasets. It is shown that CAS FGOALS-f3-L is able to reproduce the main features of the modern climate, including the climatology of air surface temperature and precipitation,the long-term changes in global mean surface air temperature, ocean heat content and sea surface steric height, and the horizontal and vertical distribution of temperature in the ocean and atmosphere. Meanwhile, like other state-of-the-art coupled GCMs, there are still some obvious biases in the historical simulations, which are also illustrated. This paper can help users to better understand the advantages and biases of the model and the datasets.  相似文献   

6.
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO_2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes. The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model, gridpoint version 3.0(FGOALS-g3). The model datasets have been submitted to the Earth System Grid Federation(ESGF) node. Here, the details of the experiments,the output variables and some baseline results are presented. Compared with the preliminary results of other models, the evolutions of global mean variables can be reproduced well by FGOALS-g3. The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean, indicating large uncertainties in the regional sea level projections of these two regions.  相似文献   

7.
BCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model,and is participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The Aerosol Chemistry Model Intercomparison Project(AerChemMIP)is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved.All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted.The DECK(Diagnostic,Evaluation and Characterization of Klima)and CMIP historical simulations have also been run as the entry card of CMIP6.The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies.To facilitate the use of the BCC-ESM1 datasets,this study describes the experiment settings and summarizes the model outputs in detail.Preliminary evaluations of BCC-ESM1 are also presented,revealing that:the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5;the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured,despite some common precipitation biases as in CMIP5 and CMIP6 models;a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1,as in most other ESMs;and the mean states of surface sulfate concentrations can also be reasonably reproduced,as well as their temporal evolution at regional scales.These datasets have been archived on the Earth System Grid Federation(ESGF)node for atmospheric chemistry studies.  相似文献   

8.
9.
利用一个新的四维变分海洋资料同化系统LICOM-3DVM对TOPEX/Poseidon高度计资料进行了同化。该同化系统是在LASG/IAP气候海洋模式LICOM1.0的基础上建立起来的,所用的同化方法为三维变分映射资料同化方法3DVM。高度计观测资料是采取间接的方式进行同化,即先建立起二维海面高度距平场与三维温度场的统计关系,并由此通过观测的海面高度距平信息反演出“观测”的三维温度场,然后利用LICOM-3DVM四维变分同化系统将此反演的温度场同化到海洋模式中。作者设计了两组试验并对结果进行了比较分析,积分时间从1993年1月至2001年12月共9年时间。结果表明,由于上混合层相关系数较小,因此同化后海温没有改进;而在温跃层以及更深层次,同化后的海温均有很大程度的改善。从对赤道太平洋地区海温的气候态、季节变化和年际变化以及Nino3区的Nino指数的模拟情况来看,由于同化时将海面高度异常和海温异常之间的相关参数取为常数,没有考虑其季节和年际变化,因此,同化后对于赤道太平洋的年际变化没有改善。对于黑潮地区,由于模式的分辨率较低,同化之前没有很好地模拟出温度锋面,温度和盐度梯度都偏小,流速也偏弱;而同化后使得温度锋面和盐度梯度与WOA01更加吻合,流速增强。  相似文献   

10.
The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m?2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.  相似文献   

11.
Two versions of the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model(CASFGOALS), version f3-L and g3, are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in phase 4 of the Paleoclimate Modelling Intercomparison Project(PMIP4), which aims to study the impact of changes in orbital parameters on the Earth's climate. Following the PMIP4 experimental protocols, four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed, and all the data, including monthly and daily outputs for the atmospheric, oceanic, land and sea-ice components, have been released on the Earth System Grid Federation(ESGF) node. These datasets contribute to PMIP4 and CMIP6(phase 6 of the Coupled Model Intercomparison Project) by providing the variables necessary for the two interglacial periods. In this paper, the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described, and the datasets are validated using proxy records. Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs, including warming in mid-to-high latitudes, changes in the hydrological cycle, the seasonal variation in the extent of sea ice, and the damping of interannual variabilities in the tropical Pacific. Meanwhile, disagreements within and between the models and the proxy data are also presented. These datasets will help the modeling and the proxy data communities with a better understanding of model performance and biases in paleoclimate simulations.  相似文献   

12.
Chao He  Tianjun Zhou 《Climate Dynamics》2014,43(9-10):2455-2469
Using the output of the Atmospheric Model Intercomparison Project (AMIP) experiments of 28 models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), the models’ performances in the simulation of the two dominant interannual variability modes of the Western North Pacific Subtropical High (WNPSH) are investigated. In the observation, the positive phases of these two modes feature an anomalous anticyclone over the western North Pacific (WNP), but the first mode (M1) is closely connected with the sea surface temperature (SST) anomalies over the tropical Indian Ocean (TIO), the maritime continent (MC) and the equatorial central Pacific (CP), while the second mode (M2) is closely connected with the SST anomalies over the WNP. The M1 is well captured by the CMIP5–AMIP models forced by the historical SST, suggesting the M1 is an SST-forced mode. The CMIP5–AMIP models capture the close relationship of the M1 with the SST anomalies over the TIO, the MC and the CP. The forcing mechanisms of M1 in the CMIP5–AMIP models are consistent with the observation, including a Kelvin wave emanating from the TIO and a local Hadley circulation originating from the MC. Different from the high reproducibility of the M1, the M2 is only moderately reproduced by the multi-model ensemble (MME) mean of the CMIP5–AMIP models. The simulated anomalous WNPSH of the M2 is weaker and shifts southwestward in the MME and many individual models compared to the observation. Among the five anomalous WNPSH years associated with the M2, the MME captures the anomalous WNPSH only in 1993 and 1994 but not in 1980, 1981 and 1987. The partial reproducibility of the M2 by the CMIP5–AMIP models suggests the M2 is neither a pure atmospheric internal mode nor a pure SST-forced mode. The observed close relationship between the anomalous WNPSH and the WNP SST anomalies is underestimated by the CMIP5–AMIP models, suggesting the local SST–WNPSH relationship may depend on the air–sea interaction over the WNP.  相似文献   

13.
The outputs of the Chinese Academy of Sciences(CAS) Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic,Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total,there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden–Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.  相似文献   

14.
The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM), has been evaluated against the observation by using the main metrics from Griffies et al. in 2009. In general, the errors of LICOM2 in the water properties and in the circulation are comparable with the models of Coordinated Ocean-ice Reference Experiments (COREs). Some common biases are still evident in the present version, such as the cold bias in the eastern Pacific cold tongue, the warm biases off the east coast of the basins, the weak poleward heat transport in the Atlantic, and the relatively large biases in the Arctic Ocean. A unique systematic bias occurs in LICOM2 over the Southern Ocean, compared with CORE models. It seems that this bias may be related to the sea ice process around the Antarctic continent.  相似文献   

15.
16.
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.  相似文献   

17.
1. Introduction The current oceanic general circulation models(GCMs) used in climate studies, especially those serv-ing as component models in coupled GCMs, havean average resolution around 2? (IPCC, 2001). Theoceanic GCMs with relatively coarse resolutions canreproduce the major observed features of the large-scale circulations, but there are some insurmount-able di?culties. It was documented by Gates (1992)that the main defects of the coarse resolution oceanicGCMs include the repres…  相似文献   

18.
对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimilation),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW (1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。  相似文献   

19.
One of the main sources of uncertainty in estimating climate projections affected by global warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is well known that the seasonal and interannual variability of surface inland variables (e.g. precipitation and snow) and ocean variables (e.g. wave height and storm surge) are linked to the atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate variability. Three important factors have been analyzed: the skill of GCMs to reproduce the synoptic situations, the skill of GCMs to reproduce the historical inter-annual variability and the consistency of GCMs experiments during twenty-first century projections. The results of this analysis indicate that the most skilled GCMs in the study region are UKMO-HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models are therefore recommended for the estimation of future regional multi-model projections of surface variables driven by the atmospheric circulation in the north-east Atlantic Ocean region.  相似文献   

20.
This paper evaluates the simulation of Arctic sea ice states using an ocean-ice coupled model that employs LASG/IAP(the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/the Institute of Atmospheric Physics) Climate Ocean Model(LICOM) and the sea-ice model from the Bergen Climate Model(BCM).It is shown that the coupled model can reasonably reproduce the major characteristics of the mean state,annual cycle,and interannual variability of the Arctic sea ice concentration.The coupled model also shows biases that were generally presented in other models,such as the underestimation of summer sea ice concentration and thickness as well as the unsatisfactory sea ice velocity.Sensitivity experiments indicate that the insufficient performance of the ocean model at high latitudes may be the main reason for the biases in the coupled model.The smoother and the fake "island",which had to be used due to the model’s grid in the North Pole region,likely caused the ocean model’s weak performance.Sea ice model thermodynamics are also responsible for the sea ice simulation biases.Therefore,both the thermodynamic module of the sea ice component and the model grid of the ocean component need to be further improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号