首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

2.
Three tiers of experiments in the Global Monsoons Model Intercomparison Project(GMMIP), one of the endorsed model intercomparison projects of phase 6 of the Coupled Model Intercomparison Project(CMIP6), are implemented by the First Institute of Oceanography Earth System Model version 2(FIO-ESM v2.0), following the GMMIP protocols.Evaluation of global mean surface air temperature from 1870 to 2014 and climatological precipitation(1979–2014) in tier-1 shows that the atmosphere model of FIO-ESM v2.0 can reproduce the basic observed atmospheric features. In tier-2, the internal variability is captured by the coupled model, with the SST restoring to the model climatology plus the observed anomalies in the tropical Pacific and North Atlantic. Simulation of the Northern Hemisphere summer monsoon circulation is significantly improved by the SST restoration in the North Atlantic. In tier-3, five orographic perturbation experiments are conducted covering the period 1979–2014 by modifying the surface elevation or vertical heating in the prescribed region. In particular, the strength of the South Asian summer monsoon is reduced by removing the topography or thermal forcing above 500 m over the Asian continent. Monthly and daily simulated outputs of FIO-ESM v2.0 are provided through the Earth System Grid Federation(ESGF) node to contribute to a better understanding of the global monsoon system.  相似文献   

3.
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO_2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes. The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model, gridpoint version 3.0(FGOALS-g3). The model datasets have been submitted to the Earth System Grid Federation(ESGF) node. Here, the details of the experiments,the output variables and some baseline results are presented. Compared with the preliminary results of other models, the evolutions of global mean variables can be reproduced well by FGOALS-g3. The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean, indicating large uncertainties in the regional sea level projections of these two regions.  相似文献   

4.
The outputs of the Chinese Academy of Sciences(CAS) Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic,Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total,there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden–Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.  相似文献   

5.
世界气候研究计划(WCRP)组织开展的耦合模式比较计划已实施到第六阶段(CMIP6),中国气象科学研究院发展的气候系统模式CAMS-CSM是注册参加CMIP6的模式之一。除CMIP6要求的气候诊断、评估和描述试验(DECK)以及历史气候模拟试验(Historical)外,CAMS-CSM还计划参加情景模式比较计划(ScenarioMIP)、云反馈模式比较计划(CFMIP)、全球季风模式比较计划(GMMIP)和高分辨率模式比较计划(HighResMIP)这4个模式比较子计划(MIPs)。文中通过介绍CAMS-CSM的基本情况和模拟性能,以及计划参加的CMIP6试验及MIPs,为模式试验数据使用者提供参考。  相似文献   

6.
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.  相似文献   

7.
世界气候研究计划(WCRP)于2003年支持开展云反馈模式比较计划(CFMIP)。目前已经开展到第三阶段(CFMIP-3)。相比前两阶段的试验,CFMIP-3试验设计更加丰富、具体,除增加CMIP6 DECK和Historical试验的观测模拟器(COSP)输出外,还围绕着回答7个云反馈相关的科学问题,设计了Tier-1(必做)和Tier-2(可选)两类试验。CFMIP将气候模拟、观测研究和过程模拟等几个研究方向更紧密地联系在一起,并为理解和模拟云及其辐射反馈的气候贡献提供更深刻的认识和分析手段。  相似文献   

8.
The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model, version f3-L(CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FGOALS-f3-L, and all these data have been published online in the Earth System Grid Federation(ESGF, https://esgf-node.llnl.gov/projects/cmip6/). The three ensembles are initialized from the 600th, 650th and 700th model year of the preindustrial experiment(piControl) and forced by the same historical forcing provided by CMIP6 from 1850 to 2014. The performance of the coupled model is validated in comparison with some recent observed atmospheric and oceanic datasets. It is shown that CAS FGOALS-f3-L is able to reproduce the main features of the modern climate, including the climatology of air surface temperature and precipitation,the long-term changes in global mean surface air temperature, ocean heat content and sea surface steric height, and the horizontal and vertical distribution of temperature in the ocean and atmosphere. Meanwhile, like other state-of-the-art coupled GCMs, there are still some obvious biases in the historical simulations, which are also illustrated. This paper can help users to better understand the advantages and biases of the model and the datasets.  相似文献   

9.
BCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model,and is participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The Aerosol Chemistry Model Intercomparison Project(AerChemMIP)is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved.All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted.The DECK(Diagnostic,Evaluation and Characterization of Klima)and CMIP historical simulations have also been run as the entry card of CMIP6.The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies.To facilitate the use of the BCC-ESM1 datasets,this study describes the experiment settings and summarizes the model outputs in detail.Preliminary evaluations of BCC-ESM1 are also presented,revealing that:the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5;the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured,despite some common precipitation biases as in CMIP5 and CMIP6 models;a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1,as in most other ESMs;and the mean states of surface sulfate concentrations can also be reasonably reproduced,as well as their temporal evolution at regional scales.These datasets have been archived on the Earth System Grid Federation(ESGF)node for atmospheric chemistry studies.  相似文献   

10.
全球季风模式比较计划(GMMIP)是第六次国际耦合模式比较计划(CMIP6)的重要组成部分。文中首先介绍了GMMIP发起的科学背景,指出发起GMMIP的必要性和历史机遇。进一步扼要描述了GMMIP试验设计的总体思路和方案、试验的用途以及与CMIP6其他模式比较子计划的相关性。最后对GMMIP的科学意义进行了评述,指出其在提升和扩大中国季风模拟和研究领域国际影响力方面的重要作用。  相似文献   

11.
12.
The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m?2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.  相似文献   

13.
The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.  相似文献   

14.
This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method was used for the ensemble simulations. Model outputs were three-hourly, six-hourly, daily, and/or monthly mean values for the primary variables of the four component models. An evaluation and analysis of the simulations is also presented. The present results are expected to aid research into future climate change and socio-economic development.  相似文献   

15.
通量距平强迫模式比较计划(FAFMIP)是第六次国际耦合模式比较计划(CMIP6)的子计划之一。FAFMIP共设计了5组试验,利用CMIP6中的大气-海洋耦合环流模式(AOGCM)对海表施加动量通量、热通量和淡水通量扰动,旨在研究在CO2强迫下模式模拟的海洋热吸收,由热膨胀引起的全球平均海平面上升,及由海洋密度和环流导致的动力海平面变化等方面的不确定性。  相似文献   

16.
The present study is aimed at revisiting the possible influence of the winter/spring Eurasian snow cover on the subsequent Indian summer precipitation using several statistical tools including a maximum covariance analysis. The snow–monsoon relationship is explored using both satellite observations of snow cover and in situ measurements of snow depth, but also a subset of global coupled ocean–atmosphere simulations from the phase 3 of the Coupled Model Intercomparison Project (CMIP3) database. In keeping with former studies, the observations suggest a link between an east–west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last 40 years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The twentieth century CMIP3 simulations provide longer timeseries to look for robust snow–monsoon relationships. The maximum covariance analysis indicates that some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the patterns are not the same as in the observations. Moreover, the apparent snow–monsoon relationship generally denotes a too strong El Niño-Southern Oscillation teleconnection with both winter snow cover and summer monsoon rainfall rather than a direct influence of the Eurasian snow cover on the Indian monsoon.  相似文献   

17.
Two versions of the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model(CASFGOALS), version f3-L and g3, are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in phase 4 of the Paleoclimate Modelling Intercomparison Project(PMIP4), which aims to study the impact of changes in orbital parameters on the Earth's climate. Following the PMIP4 experimental protocols, four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed, and all the data, including monthly and daily outputs for the atmospheric, oceanic, land and sea-ice components, have been released on the Earth System Grid Federation(ESGF) node. These datasets contribute to PMIP4 and CMIP6(phase 6 of the Coupled Model Intercomparison Project) by providing the variables necessary for the two interglacial periods. In this paper, the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described, and the datasets are validated using proxy records. Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs, including warming in mid-to-high latitudes, changes in the hydrological cycle, the seasonal variation in the extent of sea ice, and the damping of interannual variabilities in the tropical Pacific. Meanwhile, disagreements within and between the models and the proxy data are also presented. These datasets will help the modeling and the proxy data communities with a better understanding of model performance and biases in paleoclimate simulations.  相似文献   

18.
The progress made fi'om Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3°, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-i and the northward shift decreased to 2.5°. The SPR features a northeast-southwest extended rain belt with a slope of 0.4°N/°E. The CMIP5 ensemble yielded a smaller slope (0.2°N/°E), whereas the CMIP3 ensemble featured an unre- alistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two ther- mal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.  相似文献   

19.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

20.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号