首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
早古近纪是新生代典型的温室气候期,期间发生了一系列快速短暂的、以碳同位素(δ13C)负偏移为特征的增温事件(也被称为极热事件,hyperthermals),其中Danian期早期Dan-C2事件是白垩纪末期生物大灭绝之后出现的第一个热事件,因而其环境效应和生态效应受到了广泛关注。但是随着研究的不断深入,关于Dan-C2事件的争议也不断增加。通过总结Dan-C2热事件研究的最新成果,对其全球性意义及其触发机制进行综述后发现:(1)全球性意义存在争议:海洋记录方面,Dan-C2事件期间的碳同位素负偏移目前局限在大西洋和特提斯洋局部地区的浮游有孔虫和全岩记录中,底栖有孔虫很少记录到该事件,表明其可能只是一次区域性的碳扰动事件。此外,该事件期间全岩和浮游有孔虫的氧同位素(δ18O)指示的增温也仅局限在北大西洋部分海域的表层海水,底层海水普遍缺乏增温的证据。同时,尽管已有陆相Dan-C2事件的证据被发现,但是与海相记录相比,陆相记录在数量、年代学及地层的连续性上,还存在很大的不足,导致陆相记录难以与海洋记录开展深入有效的对比工作,因此该事件的全球性意义...  相似文献   

2.
广西上泥盆统F-F界线碳同位素的变化特征   总被引:3,自引:0,他引:3  
许冰  顾兆炎  胡滨  李镇梁 《沉积学报》2004,22(4):603-608
发生在晚泥盆世弗拉期(Frasnian)-法门期(Famennian)之交的生物灭绝事件(简称F-F事件)是古生代以来五大生物集群灭绝事件之一,其原因仍含糊不清。碳同位素研究显示,伴随F-F事件全球碳循环发生了显著的变化。但对中国南方F-F事件地层碳同位素变化特征的认识不够,缺乏系统的研究。对广西桂林杨堤上泥盆统灰岩剖面的碳同位素的分析结果表明,在上泥盆统存在两次碳同位素正偏移,分别出现在下rhenana带和F-F的界线,其中,出现在F-F界线的碳同位素正偏移与广西垌村以及欧美和非洲等地的上泥盆统F-F界线附近的碳同位素记录一致,且具有相近的变化幅度。进一步对广西桂林附近的杨堤和垌村剖面F-F界线的碳同位素组成变化模式的分析发现,这次正偏移可能是由多次次级变化组成,与F-F事件中生物的灭绝步骤相似。  相似文献   

3.
为探寻晚第四纪以来水合物分解事件在南海北部甲烷渗漏环境下有孔虫中的记录,对南海北部陆坡2个区块的沉积柱状样有孔虫碳氧同位素组成和测年分析发现,底栖有孔虫Uvigerina spp.碳同位素值为-2.12‰~-0.21‰,浮游有孔虫Globigerinoides ruber.氧同位素值为-3.11‰~-0.60‰,ZD3、ZS5 2个柱状样孔底年龄分别为26 616、64 090 a,对应了氧同位素Ⅲ、Ⅳ期末期,有孔虫碳同位素负偏的层位与氧同位素Ⅱ、Ⅳ期(冷期)层位相对应,负偏程度达到了-2‰,与布莱克海台和墨西哥湾等地区晚第四纪沉积层中有孔虫碳氧同位素组成相似。分析认为:研究区是典型的甲烷渗漏环境,该区在氧同位素Ⅱ、Ⅳ期,由于全球海平面下降,导致海底压力减小,天然气水合物分解释放,具轻碳同位素的大量甲烷释放进入海底溶解无机碳(DIC)池并记录在有孔虫壳体内,造成有孔虫碳同位素负偏;同时在有孔虫负偏层位黄铁矿和自生碳酸盐较发育,进一步证实了有孔虫碳同位素受甲烷影响较大,而海洋生产力的降低和早期成岩作用对有孔虫碳同位素负偏的影响较小。  相似文献   

4.
底栖有孔虫碳同位素负偏移是地质记录中天然气水合物释放的重要证据之一.对南海北部西沙海槽和东沙陆坡等天然气水合物远景区XH-27PC和DS-4PC柱状样分别进行顶空气甲烷含量分析、有机碳含量分析、粒度分析和有孔虫氧碳同位素分析.结合碳酸盐含量及AMS 14C测年,揭示研究区末次冰期以来底栖有孔虫的稳定同位素特征.结果显示:西沙海槽BSR区沉积物中甲烷含量较低;底栖有孔虫碳同位素负偏不明显,与顶空气甲烷含量呈弱正相关(R=0.32),与有机碳含量有强负相关(R=-0.82),说明低通量甲烷不足以引起底栖有孔虫碳同位素显著偏移,在无甲烷或甲烷轻微渗漏的环境中有机碳的厌氧氧化是影响底栖有孔虫碳同位素组成的主要因素.东沙陆坡BSR区沉积物中含有大量的甲烷气体;底栖有孔虫氧同位素记录在末次冰期异常偏重,可能与天然气水合物的分解释放有关;同时可识别出多期碳同位素快速负偏事件,其成因很可能是末次冰期海平面下降导致海底沉积物的温度、压力条件发生变化,从而引发水合物甲烷失稳分解,底栖有孔虫吸收富12C的甲烷源碳致使壳体碳同位素负偏移.  相似文献   

5.
不纯碳酸盐碳氧同位素组成的在线分析   总被引:13,自引:3,他引:10  
利用 GV IsoPrime(R)Ⅱ型稳定同位素质谱仪测量不纯碳酸盐样品的碳氧同位素组成,这些样品是用国家碳酸盐碳氧同位素一级标准物质 GBW04406与去除了碳酸盐的沉积物混合配制而成的, CaCO3含量在 2%~ 90%之间.结果显示 ,δ 13C内部精度为 0.002‰~ 0.005‰ (1σ ),δ 18O内部精度为 0.003‰~ 0.009‰ (1σ ),与测量所得的纯 CaCO3国际国内标准物质结果的内部精度范围一致,且外部精度达到仪器的指标要求,同时 ,不同 CaCO3含量样品的δ 13C和δ 18O的测量值 (测量平均值:δ 13C =-10.932‰± 0.021‰,δ 18O=-12.483‰± 0.054‰; 1σ )也在误差允许范围之内与 GBW04406推荐值 (δ 13C=-10.85‰± 0.05‰, δ 18O =-12.40‰± 0.15‰ ; 1σ )一致.可见碳酸盐的含量并不影响其碳氧同位素组成的分析结果,所以在线分析不纯碳酸盐的碳氧同位素组成是可行的,在线分析不纯碳酸盐样品的碳氧同位素组成之前应先对样品中碳酸盐含量进行大致估计,根据碳酸盐含量高低来确定样品用量以达到最佳分析效果.  相似文献   

6.
李祥辉  王成善  崔杰 《地学前缘》2005,12(2):171-177
介绍了高分辨率碳氧同位素的应用成果;指出半远洋、远洋碳酸盐全岩高分辨率碳同位素高值正偏可作为甄别大洋缺氧事件的指示剂和分析古气候变化的指针,碳同位素偏移型式可为长期海平面变化和短期海平面波动提供参照对比的依据。西藏南部岗巴地区的高分辨率偏移曲线显示,碳同位素Cenomanian Tu ronian界线时期的正偏幅度达2.90‰,Turonian期长期持续负偏,并在M. sigali带中、下部呈现两个负偏凹陷区。这表明,该区白垩纪中期Cenomanian Turonian期存在可以在特提斯甚至全球类比的碳同位素变化趋势,表现为Cenomanian Turonian界线时期的缺氧事件、Turonian期的长期海平面下降趋势和Turonian晚期短暂气候变冷的响应。  相似文献   

7.
四川赤普MVT铅锌矿床成矿与古老油气藏关系密切。通过对矿床不同成矿阶段硫化物硫同位素和热液碳酸盐碳、氧同位素系统研究,结合沥青有机质的有机地球化学特征,探讨油气参与金属成矿的详细过程。取得主要认识如下:(1)油气系统中先存的H2S是成矿早阶段主要的硫源, TSR作用启动后还原硫酸盐,为成矿提供另一硫源。Mg2+可能是控制成矿过程中TSR作用的一个因素;(2)热液碳酸盐矿物碳(氧)同位素组成指示了 TSR 作用氧化的有机碳与流体溶解围岩碳酸盐岩中碳的不均匀混合作用;(3)矿床中与成矿作用有关的有机质(沥青)具有高-过成熟度特征和低芳烃含量,或是其参与了 TSR 作用的一个标志;(4)川滇黔地区油气成藏-破坏和赤普铅锌成矿可能是盆山演化过程中不同阶段或是同一阶段不同时代的产物,铅锌矿床形成与古老油气藏破坏密切相关。  相似文献   

8.
渐新世初大冰期事件:南大西洋ODP1265站的记录   总被引:5,自引:1,他引:4  
始新世—渐新世(EO) 过渡期间, 地球由两极无冰的“温室地球”进入到南极有冰的“冰室地球”, 其中以发生在早渐新世初的大冰期事件尤为意义重大.南大西洋ODP1265站氧碳稳定同位素在EO过渡期间发生重大变化, 表明早渐新世全球气温迅速下降, 南极大陆东部首次出现大规模永久性冰盖, 同时全球碳储库发生重大改组, 这一结果与全球其他地区的记录一致.碳酸盐含量、粗组分、浮游有孔虫碎壳率以及碳酸钙软泥的粒度在EO界线附近都发生了突变, 指示了海洋表层生产力的升高、碳酸盐补偿深度(CCD) 的突然加深以及气候快速变冷对生物和碳酸盐沉积的影响.   相似文献   

9.
渐新世初期,南极大陆在短时间内出现永久性冰盖,地球由两极无冰进入到单极有冰的特殊时期。越来越多的研究表明,这一重大气候转型事件与大气CO2及大洋碳储库的变化密切相关。南大西洋ODP 1263站碳酸钙软泥的粒度分析揭示了在渐新世初期发生的强烈碳酸盐溶解事件,碳酸盐溶解超前于底栖有孔虫氧同位素重值约100 ka,显示碳酸盐溶解事件先于南极冰盖的形成。由于碳酸钙泵的作用,碳酸盐的溶解会消耗大量的大气CO2,从而可能驱动了气候的快速变冷,导致南极大陆永久性冰盖发育。  相似文献   

10.
东营凹陷古近系沙河街组发育纹层状泥晶碳酸盐,其产出与相邻泥、页岩中有机质含量之间存在较好相关性,但对其成因认识尚不明确。为了正确认识陆相湖泊环境中纹层状泥晶碳酸盐的成因机制,通过岩芯(619.65m)、薄片(NY1井9片,FY1井3片)观察、荧光显微镜(2片)、扫描电镜(10片)观察和地球化学分析对上述纹层状泥晶碳酸盐进行研究。观察发现纹层中存在纳米级球状和丝状碳酸盐矿物组构,与微生物活动导致其细胞外微环境物理化学条件改变而形成的胞外聚合物和丝状细菌十分相似。泥晶碳酸盐岩纹层有机-无机碳同位素对分析结果显示,无机碳同位素δ13 Ccarb值为2.1‰~4.8‰,有机碳同位素值为-27.9‰~-22.6‰,两者呈明显负相关。基于该结果提出单一碳库有机-无机碳同位素演化模式佐证泥晶碳酸盐的沉积作用与微生物活动之间存在直接联系。以上研究表明纹层状泥晶碳酸盐形成过程中受微生物活动的影响,为湖相环境中生物活动对碳酸盐矿物沉积作用的影响研究提供了重要的实例。  相似文献   

11.
国际全球变化研究发展态势文献计量评价   总被引:1,自引:0,他引:1  
-全球变化研究是国际上地球系统综合研究的重大跨学科研究领域。随着全球环境问题的日益突出,国际上先后组织发起了全球环境变化研究的四大科学计划WCRP、IGBP、IHDP、DIVERSITAS及其组成的地球系统科学联盟ESSP,开展对全球变化和地球系统科学的研究。当前,全球变化问题不仅是科学界关注和研究的问题,也是政治界、经济界都关注的重大问题。 科技文献能够反映科学前沿的发展动态。对SCIE和SSCI数据库收录的全球变化研究文献进行统计,从文献计量学的角度,分析国际全球变化研究领域的发展态势,了解中国全球变化研究的国际影响力。可以看出:国际上全球变化研究的论文数量一直呈增长趋势,以地球科学多学科、生态学、环境科学、自然地理学、植物学等学科领域为主。中国自2000年以来在该领域的发文数量增长较快,特别是中国科学院的发文量已进入国际前列,但中国在该研究领域尚缺少高影响力的论文。  相似文献   

12.
Stable isotopes and element compositions of the fine‐grained matrix were measured for IODP Expedition 307 Hole U1317E drilled from the summit of Challenger Mound in Porcupine Seabight, northeast Atlantic, to explore the palaeoceanographic and palaeoclimatic background to development of the deep‐water coral mound. The 155 m long mound section was divided into two units by an unconformity at 23.6 mbsf: Unit M1 (2.6–1.7 Ma) and Unit M2 (1.0–0.5 Ma). Results from 519 specimens show a difference in δ13C value between Unit M1 (?0.6‰ to ?5.0‰) and Unit M2 (?1.0‰ to 1.0‰), but such a distinct difference was not seen in δ18O values (1.0‰–2.5‰), CaCO3 content (40–60 wt%), Sr/Ca ratio (2.0–8.0 mmol mol?1), and Mg/Ca ratio (10.0–20.0 mmol mol?1) through the mound. Positive δ18O and negative δ13C shifts at the mound base are consistent with the oceanographic changes in the northeast Atlantic at the beginning of the Quaternary. The positive δ13C regression in Unit M2 suggests a linkage to the mid Pleistocene intensified glaciation in the Northern Hemisphere. Warm Mediterranean Upper Core Water of Mediterranean Outflow Water, Eastern North Atlantic Water and cold Labrador Sea Water of North Atlantic Deep Water are key oceanographic features that cause spikes and shifts in stable isotope and element composition. However, the stable isotope values of the sediment matrix could not primarily record the glacial–interglacial eustatic/temperature change, but indirectly indicate current regimes of the intermediate oceanic layer where the coral mound grew. Similarly, elemental ratios and CaCO3 content may not represent the productivity and temperature of surface sea water, respectively, but superpose the fractions from both surface and bottom water. It is concluded that palaeoceanographic change coupled to the Pleistocene glacial/interglacial cycles is a key control on the geochemical stratigraphy of the matrix sediments of the carbonate mound developed in Porcupine Seabight. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
《Sedimentology》2018,65(4):1331-1353
The Faxe Quarry in south‐east Denmark offers excellent exposures of Early Palaeocene, Danian deep‐water intercalated coral and bryozoan mounds that form complexes at least 40 m thick and a few kilometres wide along and over submarine highs. The coexisting coral and bryozoan mounds represent two different biogenic carbonate factories with a highly dynamic interplay during growth. The sedimentary facies, mound geometries and the density, diversity and palaeoecology of the associated benthic invertebrates and nannofossils allow recognition of six successive growth units. Unit 1 represents an outer shelf bryozoan mound belt characterized by an oligotrophic cool‐water nannofossil assemblage. Unit 2 comprises a mixed faunal assemblage of bryozoans and octocorals with an initial sparse colonization of hexacorals. The nannofossil assemblage records a decrease in diversity and an increase in warm water forms. Unit 3 marks the onset of dense colonization of the scleractinian coral Dendrophyllia candelabrum with associated low‐diversity macrofauna and nannofossil assemblages. Unit 4 represents the main coral build‐up phase with frame‐building hexacorals of Dendrophyllia and Faxephyllia associated with a high‐diversity invertebrate fauna, and relatively low‐diversity nannofossil assemblages. Unit 5 represents the late coral mound phase showing extensive lateral distribution and finally death and erosion of the coral mounds. This event was contemporaneous with a warming trend in the pelagic environment. The succeeding Unit 6 marks the burial and overgrowth of the coral mound complex by bryozoan‐rich sediments. The coral mound complex in the Faxe Quarry initiated and terminated in global nannofossil zone NP 3 and regional nannofossil zones NNT p2G–3 suggesting a mound growth duration of ca 300 kyr and a mean vertical accretion of the coral mound of 13 cm kyr−1. The mound complex probably serves as the best‐exposed analogue to modern deep and cold‐water coral mounds in the North Atlantic.  相似文献   

14.
Cold-water coral carbonate mounds, owing their presence mainly to the framework building coral Lophelia pertusa and the activity of associated organisms, are common along the European margin with their spatial distribution allowing them to be divided into a number of mound provinces. Variation in mound attributes are explored via a series of case studies on mound provinces that have been the most intensely investigated: Belgica, Hovland, Pelagia, Logachev and Norwegian Mounds. Morphological variation between mound provinces is discussed under the premise that mound morphology is an expression of the environmental conditions under which mounds are initiated and grow. Cold-water coral carbonate mounds can be divided into those exhibiting “inherited” morphologies (where mound morphology reflects the morphology of the colonised features) and “developed” morphology (where the mounds assume their own gross morphology mainly reflecting dominant hydrodynamic controls). Finer-scale, surface morphological features mainly reflecting biological growth forms are also discussed.  相似文献   

15.
Three provinces, characterized by the presence of carbonate mounds interpreted as cold-water coral banks have been reported in Porcupine Seabight, SW of Ireland and were recently subjected to many detailed studies. This contribution discusses the use of X-ray imagery and physical properties in deciphering palaeoceanographic, sedimentological and biological processes. Physical property core logging and X-ray imagery are used to identify and describe sedimentation regimes and so their respective palaeoceanographic and palaeoclimatological settings in two mound provinces, respectively the Belgica mound province and the Magellan mound province. Both provinces show at present time clear differences in the hydrodynamic environment. This study confirms that also during the past the oceanographic and sedimentological environment of both provinces differ clearly. Impacts of glacial–interglacial variations and locally derived ice rafting events (IRE), comparable with the North Atlantic Heinrich events (HE) have been recognized in both provinces. Moreover, the combination of X-ray imagery, magnetic susceptibility, gamma density and P-wave velocity makes it possible to estimate the coral content and coral distribution in unopened cores localized on top of carbonate mounds. A comparison between on-mound and off-mound cores in both provinces allowed revealing some mechanisms of mound evolution and coral growth versus time.  相似文献   

16.
The Darwin Mounds are small (up to 70 m in diameter), discrete cold‐water coral banks found at c. 950 m water depth in the northern Rockall Trough, north‐east Atlantic. Formerly described in terms of their genesis, the Darwin Mounds are re‐evaluated here in terms of mound growth processes based on 100 and 410 kHz side‐scan sonar data. The side‐scan sonar coverage is divided into a series of acoustic facies representing increasing current speed and sediment transport/erosion from south to north: pockmark facies, ‘mounds within depressions’ facies, Darwin Mound facies, stippled seabed facies and sand wave facies. Mound morphometric changes are quantified and show a south‐to‐north divergence from an inherited morphology, reflecting the outline of coral‐colonized fluid escape structures, to developed, downstream elongated, elevated mound forms. It is postulated that increasing current speeds and bedload sand transport favour mound growth and development by a process of enhanced sand sedimentation within mounds due to current deceleration by frictional drag around coral colonies. Comparisons are made with similar growth processes attributed to comparably sized cold‐water coral mounds in the Porcupine Seabight, offshore Ireland.  相似文献   

17.
Authigenic gypsum was found in a gravity core, retrieved from the top of Mound Perseverance, a giant cold‐water coral mound in the Porcupine Basin, off Ireland. The occurrence of gypsum in such an environment is intriguing, because gypsum, a classic evaporitic mineral, is undersaturated with respect to sea water. Sedimentological, petrographic and isotopic evidence point to diagenetic formation of the gypsum, tied to oxidation of sedimentary sulphide minerals (i.e. pyrite). This oxidation is attributed to a phase of increased bottom currents which caused erosion and enhanced inflow of oxidizing fluids into the mound sediments. The oxidation of pyrite produced acidity, causing carbonate dissolution and subsequently leading to pore‐water oversaturation with respect to gypsum and dolomite. Calculations based on the isotopic compositions of gypsum and pyrite reveal that between 21·6% and 28·6% of the sulphate incorporated into the gypsum derived from pyrite oxidation. The dissolution of carbonate increased the porosity in the affected sediment layer but promoted lithification of the sediments at the sediment‐water interface. Thus, authigenic gypsum can serve as a signature for diagenetic oxidation events in carbonate‐rich sediments. These observations demonstrate that fluid flow, steered by environmental factors, has an important effect on the diagenesis of coral mounds.  相似文献   

18.
Severe global climate change led to the deterioration of environmental conditions in the oceans during the Toarcian Stage of the Jurassic. Carbonate platforms of the Western Tethys Ocean exposed in Alpine Tethyan mountain ranges today offer insight into this period of environmental upheaval. In addition to informing understanding of climate change in deep time, the effect of ancient carbon cycle perturbations on carbonate platforms has important implications for anthropogenic climate change; the patterns of early Toarcian environmental deterioration are similar to those occurring in modern oceans. This study focuses on the record of the early Toarcian Oceanic Anoxic Event (ca 183.1 Ma) in outcrops of the north‐west Adriatic Carbonate Platform in Slovenia. Amidst environmental deterioration, the north‐west Adriatic Platform abruptly transitioned from a healthy, shallow‐water environment with diverse metazoan ecosystems to a partially drowned setting with low diversity biota and diminished sedimentation. An organic carbon‐isotope excursion of ?2.2‰ reflects the massive injection of CO2 into the ocean‐atmosphere system and marks the stratigraphic position of the Toarcian Oceanic Anoxic Event. A prominent dissolution horizon and suppressed carbonate deposition on the platform are interpreted to reflect transient shoaling of the carbonate compensation depth to unprecedentedly shallow levels as the dramatic influx of CO2 overwhelmed the ocean’s buffering capacity, causing ocean acidification. Trace metal geochemistry and palaeoecology highlight water column deoxygenation, including the development of photic‐zone anoxia, preceding and during the Toarcian Oceanic Anoxic Event. Ocean acidification and reduced oxygen levels likely had a profoundly negative effect on carbonate‐producing biota and growth of the Adriatic Platform. These effects are consistent with the approximate doubling of the concentration of CO2 in the ocean‐atmosphere system from pre‐event levels, which has previously been linked to a volcanic triggering mechanism. Mercury enrichments discovered in this study support a temporal and genetic link between volcanism, the Toarcian Oceanic Anoxic Event and the carbonate crisis.  相似文献   

19.
Cold‐water coral mound morphology and development are thought to be controlled primarily by current regime. This study, however, reveals a general lack of correlation between prevailing bottom current direction and mound morphology (i.e. footprint shape and orientation), as well as current strength and mound size (i.e. footprint area and height). These findings are based on quantitative analyses of a high‐resolution geophysical dataset collected with an Autonomous Underwater Vehicle from three cold‐water coral mound sites at the toe of slope of Great Bahama Bank. The three sites (80 km2 total) have an average of 14 mounds km?2, indicating that the Great Bahama Bank slope is a major coral mound region. At all three sites living coral colonies are observed on the surface of the mounds, documenting active mound growth. Morphometric analysis shows that mounds at these sites vary significantly in height (1 to 83 m), area (81 to 6 00 000 m2), shape (mound aspect ratio 0·1 to 1) and orientation (mound longest axis 0 to 180°). The Autonomous Underwater Vehicle measured bottom current data depict a north–south flowing current that reverses approximately every six hours. The tidal nature of this current and its intermittent deviations during reversals are interpreted to contribute to the observed mound complexity. An additional factor contributing to the variability in mound morphometrics is the sediment deposition rate that varies among and within sites. At most locations sedimentation rate lags slightly behind mound growth rate, causing mounds to develop into large structures. Where sedimentation rates are higher than mound growth rates, sediment partially or completely buries mounds. The spatial distribution and alignment of mounds can also be related to gravity mass deposits, as indicated by geomorphological features (for example, slope failure and linear topographic highs) in the three‐dimensional bathymetry. In summary, variability in sedimentation rates, current regime and underlying topography produce extraordinarily high variability in the distribution, development and morphology of coral mounds on the Great Bahama Bank slope.  相似文献   

20.
Carbon, oxygen and clumped isotope (Δ47) values were measured from lacustrine and tufa (spring)‐mound carbonate deposits in the Lower Jurassic Navajo Sandstone of southern Utah and northern Arizona in order to understand the palaeohydrology. These carbonate deposits are enriched in both 18O and 13C across the basin from east to west; neither isotope is strongly sensitive to the carbonate facies. However, 18O is enriched in lake carbonate deposits compared to the associated spring mounds. This is consistent with evaporation of the spring waters as they exited the mounds and were retained in interdune lakes. Clumped isotopes (Δ47) exhibit minor systematic differences between lake and tufa‐mound temperatures, suggesting that the rate of carbonate formation under ambient conditions was moderate. These clumped isotope values imply palaeotemperature elevated beyond reasonable surface temperatures (54 to 86°C), which indicates limited bond reordering at estimated burial depths of ca 4 to 5 km, consistent with independent estimates of sediment thickness and burial depth gradients across the basin. Although clumped isotopes do not provide surface temperature information in this case, they still provide useful burial information and support interpretations of the evolution of groundwater locally. The findings of this study significantly extend the utility of combining stable isotope and clumped isotope methods into aeolian environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号