首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineral forms of iron oxide, such as hematite, goethite and jarosite, are important because they are widely distributed at the Earth’s surface and because they are used as indicators for mineral exploration. Iron oxide abundance in rocks containing these minerals can be estimated from the absorption depth at wavelengths of around 900 nm in a reflectance spectrum, but this depth is also affected by extraneous factors such as grain size and topography. This paper investigated the effect of grain size on reflectance spectra and proposed a method for estimating iron oxide abundance in surface rocks by using remotely sensed data with suppression of the effects of grain size and topography. Reflectance spectra were measured in a laboratory from rock powder samples of different grain sizes containing iron oxide minerals. While the reflectance increased with decreasing grain size, the presence of ferric iron caused the absorption depth to be almost constant at around 900 nm, irrespective of the chemical composition of the sample. In addition, the difference between the reflectance at 550 nm and 760 nm (Slope) was a function of grain size. Iron oxide abundance can be estimated accurately by MCR-900D, which is the maximum absorption depth at the absorption center after the effect of grain size and topography was suppressed by Slope and the continuum-removal method, which takes the ratio between the original spectrum and its continuum, respectively. Correlation of MCR-900D results with datasets of actual spectral and chemical iron oxide laboratory measurements revealed that the mineral forms also need to be considered. MCR-900D results were significantly correlated with rock samples classified as containing different forms of iron oxide minerals (hematite, goethite and jarosite). Finally, MCR-900D was applied to an AVIRIS dataset for the Cuprite site in Nevada, USA. The results represented the enrichment zones of iron oxide within hydrothermally altered areas.  相似文献   

2.
This study aims to discriminate and to map the basement rocks as well as the barite mineralization exposed at El Hudi area, Southeastern Desert, Egypt using the processed short-wave infrared bands of advanced space-borne thermal emission and reflection radiometer (ASTER) in collaboration with the field verification and petrographic analysis. El Hudi area is covered dominantly by the Late Precambrian high-grade metamorphic complex of metasedimentary rocks (gneisses, schists, migmatites, and minor amphibolites) which are intruded by the younger granitoids. Nubian sandstones unconformably overlie the basement outcrops and occur as a remnant caps. The metasedimentary rocks cover the area of interest forming a belt of biotite gneisses and migmatites intercalated with hornblende biotite schists and minor amphibolites. Their exposures exhibit well-foliated and banded structures. The metasedimentary rocks have gray and dark gray image signatures on the ASTER band ratio image 8/5, which correspond to biotite gneiss, migmatites, and hornblende biotite schists, respectively. Presence of absorption feature near band 8 (2.295 – 2.365 μm) for the chlorite alteration product is probably responsible for the lowering of the 8/5 band ratio value and the dark gray image signature exhibited by hornblende biotite schists. The granitoid rocks in El Hudi area are late to postorogenic younger granitoids including three main rock types, Abu Aggag granites, El Hudi garnetiferous muscovite granites, and coarse-grained biotite granites. The acidic dykes are cutting across the granitoids and the gneisses and they form a highly elevated ridges and peaks showing sharp contact with the invaded rocks. Abu Aggag granites are highly dissected by great number of both strike- and dip-slip faults as well as joints trending in NNW–SSE, NNE–SSW, N–S, ENE–WSW, and WNW–ESE directions. On 7/8 band ratio image, Abu Aggag granites have dark gray image signature whereas postgranitic dykes have white image signature. Under the microscope, Abu Aggag granites are homogenous medium to coarse-grained rocks composed mainly of quartz, plagioclase, microcline, and biotite. Zircon, apatite, and opaques are accessories, while chlorite, kaolinite, and epidote are secondary minerals. Presence of absorption feature around band 7 (2.235–2.285 μm) for the kaolinite mineral may be responsible for the dark gray image signature exhibited by Abu Aggag granites. El Hudi garnetiferous muscovite granites are hosting El Hudi barite veins which extend mainly in NNW–SSE and NW–SE. Garnetiferous muscovite granites have gray image signature on 5/4 band ratio image whereas pegmatites and postgranitic dykes have black image signature. Barite veins can be distinguished within garnetiferous muscovite granites by their dark gray image signature on 5/4 band ratio image. The spectral reflectance curve of barite exhibits absorption feature around 2.1 μm (band 5), which leads to lower the ratio value and yields the dark image signature to barite veins. The above-described ASTER band ratio images were integrated into one false-color composite image (8/5:R; 5/4G; and 7/8B) which was used to produce 1:100,000 geological map for El Hudi area and to locate the barite mineralization.  相似文献   

3.
Phengite is the main potassic dioctahedral mica identified at the Olympic Dam iron oxide–copper–gold (IOCG) deposit, South Australia, where its mineral chemistry is quite variable. These differences can be explained by contrasting degrees of hydrothermal alteration. In the heavily-sericitized, ore-bearing rocks, the phengites display a lower-Si content, a higher-Al content, and a lower Mg-number than the phengites from the weakly-sericitized alteration halo that surrounds the deposit. Variations are also observed in the near- and mid-infrared reflectance spectra collected from phengite-bearing rocks. In the near-infrared, high-Al phengite produces a spectral absorption feature at 2.206 μm, and this feature is displaced to 2.213 μm for low-Al phengite. In the mid-infrared, high-Al phengite produces a strong reflectance peak at 9.59 μm, whereas this peak is observed at 9.57 μm in the spectra from low-Al phengite. Additional peaks were also identified at 10.98, 12.22, and 13.33 μm. These were most intense in the spectra from high-Al phengite. A drill core profile was produced using the results of the spectral analysis that shows the change in phengite mineral chemistry and phengite abundance as a function of depth. In general, near- and mid-infrared reflectance spectroscopy can be used to characterize the aluminum content of potassic dioctahedral micas like phengite, and this information can be used to infer the degree of sericitic alteration that has occurred as a result of hydrothermal fluid flow.  相似文献   

4.
The Shoushan Basin is an important hydrocarbon province in the northern Western Desert, Egypt, but the burial/thermal histories for most of the source rocks in the basin have not been assigned yet. In this study, subsurface samples from selected wells were collected to characterize the source rocks of Alam El-Bueib Formation and to study thermal history in the Shoushan Basin. The Lower Cretaceous Alam El-Bueib Formation is widespread in the Shoushan Basin, which is composed mainly of shales and sandstones with minor carbonate rocks deposited in a marine environment. The gas generative potential of the Lower Cretaceous Alam El-Bueib Formation in the Shoushan Basin was evaluated by Rock–Eval pyrolysis. Most samples contain sufficient type III organic matter to be considered gas prone. Vitrinite reflectance was measured at eight stratigraphic levels (Jurassic–Cretaceous). Vitrinite reflectance profiles show a general increase of vitrinite reflectance with depth. Vitrinite reflectance values of Alam El-Bueib Formation range between 0.70 and 0.87 VRr %, indicating a thermal maturity level sufficient for hydrocarbon generation. Thermal maturity and burial histories models predict that the Alam El-Bueib source rock entered the mid-mature stage for hydrocarbon generation in the Tertiary. These models indicate that the onset of gas generation from the Alam El-Bueib source rock began in the Paleocene (60 Ma), and the maximum volume of gas generation occurred during the Pliocene (3–2 Ma).  相似文献   

5.
Structural studies in the Sydney region have revealed the presence of vertical to near-vertical, north-northeast-striking faults that are manifest as joint swarms and highly brecciated zones in which gouge of varying thickness is developed. Strike-slip movement accompanied by minor dip-slip, normal movement occurred on these faults. Timing of movement on these faults by K–Ar dating of illite and illite–smectite in fractions extracted from fault gouges, was attempted. These dates were compared with dates obtained from the host-rocks. K–Ar ages determined from the 2–10 μm to <0.1 μm fractions produced from the gouge and host-rocks, range from 159.5 ± 3.2 to 106.6 ± 2.1 Ma (n = 26). In <0.5 μm fractions extracted from the gouges that are less contaminated by detrital phases, K–Ar ages vary from 138 ± 4.4 to 106.5 ± 2.1 Ma (mean 121 Ma; n = 6) which are similar to ages obtained from host-rocks in the Sydney region. The similarity in age between the host rocks and gouge suggests that the K–Ar system has been reset. The resetting is attributed to a thermal event at ca 120 Ma related to the underplating of felsic intrusions associated with early stages of breakup of East Gondwana. Subsequent to this event, dykes of Early Eocene age (K–Ar whole-rock: 51.0 ± 1.1 Ma) exploited north-northeast-striking faults and subsequently developed brecciated margins. These observations and the fact that gouge formed before the thermal event suggests that movement took place on north-northeast-striking faults prior to 120 Ma and after 51 Ma.  相似文献   

6.
Twenty-seven samples of black weathering crust and host carbonates were studied from seven European countries (Germany, Hungary, Belgium, Czech Republic, France, Italy and Poland) representing 11 different sites. The samples were collected for sites for which long-term air pollution records are available. The mineralogical analyses (XRD, polarizing microscopy, SEM) have shown that despite decreasing SO2 emissions crust samples are still very rich in gypsum. Further, in all host rock samples gypsum was also detected. Good correlations (R2 > 0.9) were also found between water-soluble calcium and gypsum content and between sulphate and gypsum content both for black crusts and host rocks. The black gypsum crusts are four or five times richer in sulphate than the host rock. The conductivity of dissolved crust and host rock samples also shows a positive correlation with gypsum content of the samples. LA-ICP-MS analyses allowed the detection of high Pb-levels in black crusts and a negative shift in lead concentration at the crust/host rock transition. The lead content of the host rock is 2–5 mg/kg, while that of the crust is 3–25 mg/kg in the sample collected from Germany, while in the Belgian sample these values are 2–14 mg/kg and 80–870 mg/kg for the host rock and crust, respectively. The GC–MS technique allowed to detect the PAH content of black crusts and host rocks. The former one contains 0.6–15.6 (102.5) mg/kg, while in the host rock values between 0.2 and 2.4 mg/kg were found. The present study suggests that still large amounts of air pollution-related minerals and organic pollutants are found in the black weathering crusts of European carbonate buildings despite decreasing trends in air pollution.  相似文献   

7.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

8.
ABSTRACT

In order to determine the effects of fluid–rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high-pressure–low-temperature metamorphic belt represents a prograde, fluid-induced blueschist–eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 μg/g) via a blueschist–eclogite transition zone (19–23 μg/g) and an eclogitic selvage (12–16 μg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in δ15Nair (+2.1 ± 0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite–blueschist transition. It shows increasing, but more scattered, N concentrations from the eclogite towards the blueschist and an unsystematic variation in δ15N values (δ15N = + 1.0 to +5.4‰). A third profile from the high-P/T metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14–52 μg/g) and positive δ15N values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11–24 μg/g for the amphibolites, 10–14 μg/g for the retrogressed eclogite, and 2.1–3.6 μg/g for the pristine eclogite, which also has the lightest N isotopic compositions (δ15N = + 2.1 to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of metres and affects both N concentrations and N isotopic compositions.  相似文献   

9.
Mineral processing operation at the Sarcheshmeh porphyry copper mine has produced huge quantities of tailings materials containing sulphide minerals in particular pyrite. These tailings materials were geochemically and mineralogically characterised to assess pyrite and chalcopyrite oxidation, acid mine drainage generation, and trace element mobility to lead development of a proper remediation plan. Five vertical trenches up to 4.2 m deep were excavated from the tailings surface, and 70 solid samples were taken in 0.3 m intervals. The samples were first mineralogically analysed. Pyrite was the main sulphide mineral found in the tailings. The gangue minerals include quartz ± muscovite–illite ± chlorite ± albite ± orthoclase ± halite. The samples were geochemically analysed for total concentrations of 62 elements, paste pH, SO4 2?, CO3 2?, and HCO3 ?. The maximum concentrations of SO4 2? (1,300, 1,170, 1,852, 1,960 and 837 mg/L) were observed at a depth of 0.9 m in profiles A, B, C, D and E, respectively. The tailings have a high acid-producing potential and low acid-neutralising potential (pyrite 4–6 wt %, calcite 1 wt %). Fe2(SO4)3, CuSO4, MgSO4 and MnSO4 were the dominant secondary sulphate minerals in the tailings. The lowest pH values (2.9, 3 and 3) were measured at a depth of 0.3 m in the profiles A, B and C, 3.9 at a depth of 0.6 m in the profile D and 3 at a depth of 0.9 m in the profile E. The upper portions of the profiles C (1.8 m) and D (2.1 m) were moderately oxidised, while oxidation in the profiles A, B and E did not extend more than 1.2, 1.2 and 1.5 m beneath the tailings surface. Zn, Pb, Rb, U, Hf, Nd, Zr and Ga show almost a constant trend with depth. Cd, Sr, Th, La and Ce increased with increasing depth of the tailings materials while, Co, V, Ti, Cr, Cu, As, Mn, Ag, Mo and Ni exhibit initially a decreasing trend from tailings surface to the depths that vary between 0.9 and 1.2. They then remained constant with the depth. The results show pyrite and chalcopyrite oxidation at surface layers of the tailings and subsequent leaching of the oxidation products and trace elements by infiltrated atmospheric precipitation.  相似文献   

10.
As part of the International Continental Scientific Drilling Program (ICDP), the 1.5-km-deep borehole Yaxcopoil-1, located in the Chixculub meteor impact structure in Mexico, has undergone further study after drilling operations ceased. Temperature logs were repeated ten times at intervals 0.3–0.8, 15, 24 and 34 months after borehole shut-in. The logs bear a distinct signature of transient heat transfer by groundwater flow manifested by a gradual distortion of the linear temperature profile when a cold wave of 0.8–1.6°C amplitude was detected propagating downward from 145 to 312 m at a rate of 4–6 m/month. To understand the nature of this moving anomaly, a 20-day monitoring of the cold wave was carried out at a depth of 307 m that showed further cooling of 0.6°C during the first 16 days of the passage followed by temperature stabilisation. As an explanation of this unusual phenomenon, a theory is proposed, whereby the drilling mud has accumulated within the overlying and cooler highly porous and permeable karstic rocks during the drilling and migrates downward. The observed migration rate suggests a permeability higher than 10?11 m2. This indicates a high vulnerability to contamination of the only freshwater aquifer in the Yucatan region.  相似文献   

11.
Ogbonnaya Igwe 《Landslides》2013,10(4):515-521
The ICL/IPL Project achieved results in capacity building, investigation of landslides in West Africa and also evaluated some other slope movements in the region. These include the catastrophic rock–debris avalanche at the Cameroon–Nigeria border and the Iva Valley landslides in Enugu. During the avalanche, an estimated 100 M m3 of rock and debris was moved more than 2 km from the source of the slide at 600 m above sea level to the toe in the valley in a few minutes. The materials range from mud and soil debris to blocks of rocks up to 20 m in diameter. The grain size of moved material tended to increase upslope and closer to the head scarp though it tended to decrease again close to and at the source area. Nature and composition of the basement bedrock with foliation planes dipping in the direction of slope, dominant joint sets oriented perpendicularly to the foliation, the nature of weathered material and high relief were strong factors in the avalanche. Field studies identified 43 landslides at the Iva Valley area of Enugu state, which were shallow, short run-out movements with slip-surface depth less than 2 m. The shallow slides and the avalanche are triggered by water infiltration in slopes with high topographic gradient. The soil saturation leads to a reduction of the shear strength of the soil because of a rise in pore water pressure. These landslides are known to occur during or after intense rainfalls at the beginning or at the tail end of rainy season.  相似文献   

12.
Kaolinitic clays associated with sedimentary rocks cover widespread in the Yeniköy formation from the Akhar?m district, (Afyonkarahisar, W Anatolia). Due to the proximity to the ceramic industry areas such as Kütahya and U?ak Province of Turkey, the clays in the Akhar?m district have been intensively exploited for the last few years. The Akhar?m kaolinitic clays were hosted by Middle-Upper Miocene-aged Yeniköy formation and divided into two parts as northeastern and southwestern via normal fault. The alteration degree increases from lower levels to surface in the NE part of deposit. Besides layered structure in their N70° W/30° SW direction and gray-beige, yellowish brown colored in SW part. This study focused on mineralogy, geochemistry, and ceramic properties of kaolinitic clays. X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, chemical, physical, and mechanical tests were conducted on studied samples from the wall of clay quarry. Akhar?m clay deposits consist of mainly kaolinite and quartz. Additionally, they include smectite, biotite, feldspar, jarosite, calcite, and hematite minerals. Akhar?m clays are characterized with their moderate plasticity (PL = 17.07–24.09), low water absorption (3.64–9.53 wt.%), low linear shrinkage (8.08–15.55 wt.%), high bending strength (17.72–32.69 N/mm2), and ideal lightness values (L* = 46.50–82.74) and color values (a* = 4.71–29.87; b* = 14.67–28.72). These properties vary related with mineralogical and geochemical features of Akhar?m clays. In conclusion, Akhar?m clays have desired specifications for floor and wall t to their mineralogical, geochemical, and ceramic properties.  相似文献   

13.
Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar–Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth’s surface at about 5.30 Ma. Based on the δ18O–δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.  相似文献   

14.
This study is a contribution to our understanding of the hydrocarbon potentials of the Nkporo Shale in the Anambra Basin, Nigeria. The main objective was to simulate the hydrocarbon generation and expulsion in the Nkporo source horizons encountered in Igbariam-1, Iji-1, and Ajire-1 wells drilled in the basin, using the one-dimensional Genesis Zetaware basin modeling software. This software enabled the integration of burial and thermal influences on Nkporo source rocks with kinetic parameters, in order to define the timing of hydrocarbon generation and expulsion in relation to the main structural episodes in the basin. The Nkporo source horizons encountered in Igbariam-1 well (2,650 m) has not expelled hydrocarbons but has a remaining potential of 380 mg/gTOC. Conversely, in Iji-1 well (3,450 m) and Ajire-1 well (3,250 m), the Nkporo source rocks expelled oil of about 110–127 mg/gTOC and gas of about 85–125 mg/gTOC. The time of expulsion was in Eocene–Oligocene (51–30 My) at the rate of 10.5–11.5 mg/gTOC/My. The remaining potentials for Nkporo source rocks in Iji-1 and Ajire-1 wells are 160 and 125 mg/gTOC, respectively. The result shows an increasing trend in maturation, generation, and expulsion of hydrocarbons with increasing depth towards the southwestern part of the basin. This resulted in an increase in the generated hydrocarbon volumes to the south due to (a) increased burial depth and early maturation and (b) changing source lithofacies—more marine. The fault system linking potential reservoirs such as Owelli Sandstone to the source rock suggests a possible migration of the generated hydrocarbons to those reservoirs at that time.  相似文献   

15.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

16.
High-pressure and ultrahigh-pressure (UHP) eclogite-bearing metamorphic assemblages in the North Tianshan of Kyrgyzstan are known from the Aktyuz and Makbal areas, where eclogites and garnet amphibolites are associated with continental rocks such as granitoid gneisses in Aktyuz and shallow-water clastic (passive margin?) metasediments in Makbal. We present the first Lu–Hf isotope data for an eclogite and two garnet amphibolite samples from the two metamorphic terranes which, combined with petrological analysis, tightly constrain the age of high-pressure metamorphism in the Kyrgyz North Tianshan. A five-point isochron for an Aktyuz eclogite sample provides a Lu–Hf age of 474.3 ± 2.2 Ma, and a four-point isochron on a Makbal sample corresponds to 470.1 ± 2.5 Ma. A prograde, subduction-related path is inferred for both samples with peak P–T conditions ranging from 1.4 to 1.6 GPa and 610–620 °C. A further Makbal sample provided a significantly older Lu–Hf age of 486 ± 5.4 Ma, most likely due to late alteration in the sample (late addition of unradiogenic Hf). We conclude that garnet growth in all three samples occurred around ca. 474 Ma and that these rocks likely experienced UHP metamorphism contemporaneously. Our results support previous geochronological evidence for an Early Ordovician collision belt in the North Tianshan and allow refinement of a tectonic model involving subduction of thinned continental crust to considerable depth along the margin of a small microcontinent.  相似文献   

17.
Arsenic contamination of well water is a serious issue in the Nawalparasi District of the Terai region in Nepal. A local investigation was carried out on 137 tube wells in 24 communities of the district in December 2011. The investigation revealed that the average arsenic concentration in the tube wells was 350 μg/L, and that nearly 98 % of the wells exceeded the WHO guideline arsenic level limit of 10 μg/L. Highly contaminated well water, with more than 400 μg/L of arsenic, was found within the limited depth ranges of 18–22 and 50–80 m. High arsenic levels exceeding 500 μg/L were detected in shallower wells at Patkhauli, Mahuawa, Thulokunwar, and Goini located between 27.517° and 27.543°N and between 83.648° and 83.748°E. Boring sampling at five communities of Kashiya, Goini, Sanokunwar, Thulokunwar, and Mahuawa revealed two aquifers located at the two depths around 14–22 and 41–50 m in each community. Dark gray or black-colored peaty clay layers rich in organic matter were distributed at depths of 18–21 m beside the upper aquifers with high arsenic concentration in each community. Positive correlations were shown between iron and arsenic in the sediments from the five communities. It can be inferred that these results were caused by dissolution of iron-oxyhydroxide molecules with arsenic from solid phases. Microbial metabolisms have a great potential to induce the dissolution and release arsenic attached on the solid phases into aqueous phases depending on the level of redox potential and pH.  相似文献   

18.
Polycyclic aromatic hydrocarbons’ (PAHs) concentrations in bulk samples are commonly used to assess contamination but PAHs are unevenly distributed among particle-size fractions. Seventeen urban surface soil samples from the city of Xuzhou, China, were collected and then fractionated into five size fractions (2,000–300, 300–150, 150–75, 75–28, and <28 μm). The concentrations of 12 US EPA PAHs were measured using gas chromatograph/mass spectrometry in various fractions, and the bulk soil samples and distribution patterns of PAHs in different particle-size fractions were investigated. The mean concentration of total PAHs in bulk soil samples was 1,879 ng/g. The median concentrations for all individual PAH were higher for the 75–2,000 μm fraction than for the <75 μm fraction. The distribution factors for various PAHs in <28 μm soil fraction were closely correlated (r = ?0.661, p < 0.019) to bulk soil fugacity capacity. The values of PAH isomer indicated that traffic emissions might be the major origin of PAHs in Xuzhou surface soils. Spearman correlation analysis was performed and the result suggested that soil organic carbon might be a factor controlling the concentrations of PAHs in soils.  相似文献   

19.
ABSTRACT

Polycrystalline microdiamonds are rare in ultrahigh-pressure (UHP) rocks worldwide. Among samples collected at Erzgebirge, Germany, we found abundant polycrystalline microdiamonds as inclusions in zircons from a quartzofeldspathic rock. To illuminate their origin and forming age, we investigated morphologies and Raman spectra of 52 microdiamond inclusions, and dated the zircon host. The zircons have low Th/U values (0.03–0.07) and a concordia U/Pb age of 335.8 ± 1.9 Ma. Polycrystalline diamond (10–40 µm) consists of many fine-grained crystals (1.5–3 µm) with different orientations; discrete single diamonds (2–20 µm) are rare. All measured Raman spectra show an intense diamond band at 1332–1328 cm?1 and have a negative correlation with full width at half maximum (FWHM) of 5.8–11.3 cm?1. These data combined with previously reported diamond band data (1331–1337 cm?1) are compatible with those of diamond inclusions in various host minerals from other UHP terranes, but are different from those of ureilite diamonds. The Erzgebirge microdiamonds in zircon do not display visible disordered sp3-carbon, but show downshifting of the Raman band from the ideal value (1332 cm?1), and have a broader diamond band (FWHM >3 cm?1) than those of well-ordered diamonds. These features may reflect imperfect ordering due to rapid nucleation/crystallization during UHP metamorphism and rapid exhumation of the UHP terrane. Graphite inclusions in zircon show a typical G-band at 1587 cm?1. Our study together with previously reported C-isotopic compositions (δ13C, ?17 to ?27‰) of diamond and occurrences of fluid/melt inclusions in diamond and garnet indicates that Erzgebirge microdiamonds are metamorphic, have an organic carbon source, and crystallized from aqueous fluids. Limited long-range ordering suggested by the Raman spectra is a function of the PT time of crystallization and subsequent thermal annealing on decompression. Combined with regional geology, our work further constrains the tectonic evolution of the Erzgebirge terrane.  相似文献   

20.
Microscopic morphology and elemental composition of atmospheric particulate matter (PM) in 13 different size fractions from 0.01 to 10 μm were studied using a Field Emission Scanning Electron Microscope with Energy-Dispersive Spectrometer (FESEM–EDX). The relative mass fractions exhibited a bimodal distribution with a major mode in the fine range (0.18–1 μm) and a minor mode in the coarse range (>1 μm), suggesting that the major pollution of PM is fine particles in this area of Urumqi atmosphere. The PM could be classified as follows: aluminosilicate/silica mineral, Si–Al rich fly ash, Fe oxide particle, Ti dominant particle, sulfate/carbonate crystal, carbonaceous aerosols (including soot, organic carbon, tar ball and irregularly shaped carbon). The soot and organic carbon with anthropogenic sources are dominant types in fine range samples (<1 μm). The natural source minerals and secondary synthesized sulfate/carbonate crystals were accumulated in the coarse range (>1 μm). Elemental composition of various types of particles (0.056–5.6 μm) was also analyzed by EDX. C, S, O, N, Si, Al, Fe, Ca, Na, K, Mg, Cl, F, Hg were detected in most samples. Si, Al and Ca accumulated in coarse fractions, while S and Hg mainly accumulated in fine fractions. Concentrations of 15 metallic elements in size range from 0.1 μm to 5.6 μm were divided into three groups based on their possible sources. (1) The crustal elements (Al, Mg, Fe, Mn and V), mainly present in coarse particles (>1 μm); and (2) the anthropogenic source elements (Ca, Ni, As, Cu, Pb, Cd and Hg). The concentrations of Ca and Ni increased with increasing particle size, while As, Cu, Pb, Cd and Hg showed opposite trends. As, Cu, Pb, Cd and Hg accumulated mainly in fine fraction (<1 μm). (3) The multi sources elements (Cr, Co and Se) possibly come from both natural and anthropogenic sources. High levels of heavy metals, especially Hg in nanosize particles, may pose great risk to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号