首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Seventy-seven spatially orientated, serial thin sections cut from a single rock reveal changes in the geometry of spiral-shaped inclusion trails (SSITs) in garnet porphyroblasts. The observed SSITs are doubly curved, non-cylindrical surfaces, with total inclusion-trail curvature decreasing systematically from the cores to the rims of porphyroblasts. The three-dimensional geometry of the SSITs, reconstructed with the aid of computer graphics, shows that the orientations of spiral axes defined by the SSITs are not related in any expected nor predictable way to the main foliation in the matrix. This suggests continued deformation after or during the latest stages of porphyroblast growth, which has important implications for the use of SSITs as shear-sense indicators. Whether the formation of SSITs involves significant porphyroblast rotation with respect to a geographically fixed reference frame cannot be determined from the available data.  相似文献   

2.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

3.
雅鲁藏布江缝合带米林地区的石英片岩糜棱岩化强烈,线理及面理构造发育。S-C组构、"σ"残斑以及不对称褶皱等指示了上盘相对下盘向NW下滑的剪切运动趋势。电子背散射衍射(EBSD)测试结果表明:雪球状石榴子石变斑晶边部面理(S2)中石英包裹体晶格优选方位模式图指示的运动指向与石英岩基质面理(或外部面理;S3)中石英包裹体晶格优选方位模式图指示的运动指向一致,都是上盘向NW正滑。然而,雪球状石榴子石的核部(S1)石英包裹体优选方位(LPO)模式图指示相反运动指向。能量色散显微分析(EDS)测试结果表明石榴子石的成分环带显示连续生长环带特征。连接石榴子石核部面理(S1)可以恢复得到石英岩早期不对称褶皱形状的面理轨迹。这些说明文章样品中雪球状石榴子石变斑晶是生长在不对称褶皱之上的。此过程主要是剪切方向发生了旋转,而不是石榴子石自身旋转。这种雪球状石榴子石变斑晶的存在说明南迦巴瓦地区雅鲁藏布江缝合带西侧岩石最初经历向SE的逆冲作用,后期经历由SE向NW的拆离滑脱事件。  相似文献   

4.
Staurolite porphyroblasts, 1.5–8cm in length and 0.3–2cm in width, in the Littleton Schist at Bolton, Connecticut, contain curved quartz inclusion trails which document synkinematic rotations of at least 135°. The orientations of long axes of these staurolite crystals define a weak preferred orientation in a plane approximately parallel to the external foliation. Serial sections of four differently orientated crystals and U-stage measurements of the orientations of their inclusion trails demonstrate that the inflection hinge line and the statistical 'symmetry axis' characterizing the foliation within a porphyroblast are unrelated to the orientations of external crenulations and are, in all cases, parallel to the long axis of the porphyroblast. The cumulative rotation reflected in the curvature of the inclusion trails is a maximum in a c -axis section through the initial core of a crystal. The amount of rotation about the c -axis decreases linearly along the length of the crystal away from the nucleation site.
The sense and amount of rotation recorded by a porphyroblast is related to its orientation. A tightly constrained transition from clockwise to anticlockwise rotation defines a slip direction that coincides with the preferred orientation of the staurolite c -axes. The total rotation reflected by the inclusion trails increases as a function of the angle between the c -axes of the staurolite crystals and the slip direction.
Initially random staurolite porphyroblasts rotated during growth, as a consequence of laminar shear in the surrounding viscous matrix. This interpretation is quantitatively consistent with: the staurolite preferred orientation; its coincidence with the apparent slip direction; the correlation between both the sense and the amount of rotation and the orientation of the long axis of the porphyroblast; and the twisted conical shape of the family of surfaces defined by the inclusion trails.  相似文献   

5.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

6.
In the low‐pressure, high‐temperature metamorphic rocks of western Maine, USA, staurolite porphyroblasts grew at c. 400 Ma, very late during the regional orogenesis. These porphyroblasts, which preserve straight inclusion trails with small thin‐section‐scale variation in pitch, were subsequently involved in the strain and metamorphic aureole of the c. 370 Ma Mooselookmeguntic pluton. The aureole shows a progressive fabric intensity gradient from effectively zero emplacement‐related deformation at the outer edge of the aureole ~2900 m (map distance) from the pluton margin to the development of a pervasive emplacement‐related foliation adjacent to the pluton. The development of this pervasive foliation spanned all stages of crenulation cleavage development, which are preserved at different distances from the pluton. The spread of inclusion‐trail pitches in the staurolite porphyroblasts, as measured in two‐dimensional (2‐D) thin sections, increases nonlinearly from ~16° to 75° with increasing strain in the aureole. These data provide clear evidence for rotation of the staurolite porphyroblasts relative to one another and to the developing crenulation cleavage. The data spread is qualitatively modelled for both pure and simple shear, and both solutions match the data reasonably well. The spread of inclusion‐trail orientations (40–75°) in the moderately to highly strained rocks is similar to the spread reported in several previous studies. We consider it likely that the sample‐scale spread in these previous studies is also the result of porphyroblast rotation relative to one another. However, the average inclusion‐trail orientation for a single sample may, in at least some instances, reflect the original orientation of the overgrown foliation.  相似文献   

7.
Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.
Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.  相似文献   

8.
Numerical 3D simulations of the development of spiral inclusion trails in porphyroblasts were conducted in order to test the proposals that (a) 3D spiral geometry differs between the rotation and nonrotation end‐member models of spiral formation proposed in the literature, and (b) 3D spiral geometry can be used as a criterion to distinguish between the two end‐member models in rocks. Four principal differences are identified between the two sets of simulations: smoothness of spiral curvature; spacing of foliation planes; alignment of individual foliation planes either side of the sphere representing the porphyroblast; and spiral asymmetry with respect to matrix shear sense. Of these differences, only spiral asymmetry and possibly the alignment of individual foliation planes are diagnostic criteria for distinguishing between the end‐member models. In the absence of a readily applied test to distinguish the end‐member models, interpretation of spiral inclusion trails is problematic. It is necessary to determine complementary evidence to distinguish porphyroblast rotation or nonrotation during spiral formation.  相似文献   

9.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

10.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

11.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

12.
Abstract Textural ‘unconformities’or truncations are common in porphyroblasts with complex inclusion trails. They reflect cycles of successive foliations that develop against competent porphyroblasts during orogenesis and are preserved by successive growth increments. Their truncational character results from shear and dissolution along a particular foliation generating a differentiated crenulation cleavage. The increment of porphyroblast growth that follows a textural ‘unconformity’may or may not mark a significant compositional change, depending on the amount of movement of the rock through P–T space between cleavage-forming events. Although historically interpreted to result from a significant metamorphic hiatus, most textural unconformities indicate that the reactions involved in the formation of these minerals are episodic during continuous prograde metamorphism, starting and stopping as a function of the stage of crenulation of the matrix foliation and the pattern of deformation partitioning. Such episodic reaction behaviour can only occur for multivariant reactions, or successive but different univariant reactions. The reason why garnet is the most common porphyroblast to exhibit evidence for episodic reactions is probably the fact that it grows by multivariant reactions over a much wider P–T range than most other common porphyroblast phases. Porphyroblast growth is micrometasomatic. It is episodic because a significant reduction of strain occurs within domains of progressive shortening each time continuous progressive shearing domains form on their margins. This stops microfracture development across the progressive shortening domains, thereby preventing rapid access and interaction of fluid, ions and complexes with porphyroblast boundaries. Shifting patterns of deformation partitioning and resulting small-scale juxtaposition of different compositional layers spreads the duration and location of multivariant reactions and causes differential timing of porphyroblast growth along a particular stratigraphic horizon. It may also locally preserve metastable metamorphic assemblages. In regionally metamorphosing/deforming pelites, near-simultaneous cessation of porphyroblast growth on all rims, once continuous differentiated progressive shearing domains have formed nearby, precludes fluid recirculation as a significant process for removal of material during cleavage development. Alternatively, diffusion of simple molecules and dissociated ions along actively shearing and micro-gaped phyllosilicates, with recomplexing in fluid-filled microfractures, readily explains the control of deformation partitioning on reaction site and reaction duration.  相似文献   

13.
Argument about shear on foliations began in the mid 19th century and continues to the present day. It results from varying interpretations of what takes place during the development of different types of foliations ranging from slaty cleavages through differentiated crenulation cleavages, schistosity and gneissosity to mylonites. Computer modelling, quantitative microstructural work and monazite dating have provided a unique solution through access to the history of foliation development preserved by porphyroblasts. All foliations involve shear in their development and most can be used to derive a shear sense. The shear sense obtained is consistent between foliation types and accords with recent computer modelling of these structures preserved within porphyroblasts relative to those in the matrix. The asymmetry of curving foliation into a locally developing new one allows determination of the shear sense along the latter foliation in most rocks. The problem of shear on fold limbs and parallelism of foliation and the flattening plane of the strain ellipse is resolved through the partitioning of shearing and shortening components of deformation into zones that anastomose around ellipsoidal domains lying parallel to the XY plane. Conflicts in shear sense occur if multiple reuse or reactivation of foliations is not recognized and allowed for but are readily resolved if taken into account.  相似文献   

14.
Theoretical and experimental results show that determination of sense of rigid rotation from drag-patterns of foliation around a rigid spherical inclusion (such as a porphyroblast of garnet) is not as simple as was previously thought. An asymmetric drag-pattern can develop even when the bulk deformation is non-rotational, provided a pre-existing foliation was initially at an angle to the principal axes of strain.In simple shear, the drag-pattern of a pre-existing foliation around the rigid inclusion may belong to any one of the following four types:
1. (1) asymmetric pattern, with the same sense of drag all over the contact.
2. (2) more or less symmetrical pattern, with different senses of drag at different parts of the contact.
3. (3) asymmetrical pattern, with different senses of drag.
4. (4) pattern with inward bowing of foliation (i.e. convex toward the rigid inclusion).
The geometry of the distorted foliation will depend on the amount of simple shear and the initial angle between the pre-existing foliation and the direction of simple shear.If the development of schistosity and the subsequent development of drag around a rigid porphyroblast are results of the same continuous simple-shear movement, a wellpreserved drag-pattern may be utilized to confirm that the schistosity initially developed perpendicular to the maximum finite compressive strain, provided the total deformation is not very large.  相似文献   

15.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

16.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

17.
ABSTRACT Oppositely concave microfolds (OCMs) in and adjacent to porphyroblasts can be classified into five nongenetic types. Type 1 OCMs are found in sections through porphyroblasts with spiral-shaped inclusion trails cut parallel to the spiral axes, and commonly show closed foliation loops. Type 2 OCMs, commonly referred to as ‘millipede’ microstructure, are highly symmetrical, the foliation folded into OCMs being approximately perpendicular to the overprinting foliation. Type 3 OCMs are similar to Type 2, but are asymmetrical, the foliation folded into OCMs being variably oblique to the overprinting foliation. Type 4 OCMs are highly asymmetrical, only one foliation is present, and this foliation is parallel to the local shear plane. Type 5 OCMs result from porphyroblast growth over a microfold interference pattern. Types 1 and 2 are commonly interpreted as indicating highly noncoaxial and highly coaxial bulk deformation paths, respectively, during porphyroblast growth. However, theoretically they can form by any deformation path intermediate between bulk coaxial shortening and bulk simple shearing. Given particular initial foliation orientation and timing of porphyroblast growth, Type 3 OCMs can also form during these intermediate deformation paths, and are commonly found in the same rocks as Type 2 OCMs. Type 4 OCMs may indicate highly noncoaxial deformation during porphyroblast growth, but may be difficult to distinguish from Type 3 OCMs. Thus, Types 1–3 (and possibly 4) reflect the finite strain state, giving no information about the rotational component of the deformation(s) responsible for their formation. Furthermore, there is a lack of unequivocal independent evidence for the degree of noncoaxiality of deformation (s) during the growth of porphyroblasts containing OCMs. Type 2 OCMs that occur independently of porphyroblasts or other rigid objects might indicate highly coaxial bulk shortening, but there is a lack of supporting physical or computer modelling. It is possible that microstructures in the matrix around OCMs formed during highly noncoaxial and highly coaxial deformation histories might have specific characteristics that allow them to be distinguished from one another. However, determining degrees of noncoaxiality from rock fabrics is a major, longstanding problem in structural geology.  相似文献   

18.
Porphyroblast inclusion trails: the key to orogenesis   总被引:8,自引:0,他引:8  
Detailed microstructural analysis of inclusion trails in hundreds of garnet porphyroblasts from rocks where spiral-shaped inclusion trails are common indicates that spiral-shaped trails did not form by rotation of the growing porphyroblasts relative to geographic coordinates. They formed instead by progressive growth by porphyroblasts over several sets of near-orthogonal foliations that successively overprint one another. The orientations of these near-orthogonal foliations are alternately near-vertical and near-horizontal in all porphyroblasts examined. This provides very strong evidence for lack of porphyroblast rotation.
The deformation path recorded by these porphyroblasts indicates that the process of orogenesis involves a multiply repeated two-stage cycle of: (1) crustal shortening and thickening, with the development of a near-vertical foliation with a steep stretching lineation; followed by (2) gravitational instability and collapse of this uplifted pile with the development of a near-horizontal foliation, gravitational spreading, near-coaxial vertical shortening and consequent thrusting on the orogen margins. Correlation of inclusion trail overprinting relationships and asymmetry in porphyroblasts with foliation overprinting relationships observed in the field allows determination of where the rocks studied lie and have moved within an orogen. This information, combined with information about chemical zoning in porphyroblasts, provides details about the structural/metamorphic ( P-T-t ) paths the rocks have followed.
The ductile deformation environment in which a porphyroblast can rotate relative to geographic coordinates during orogenesis is spatially restricted in continental crust to vertical, ductile tear/transcurrent faults across which there is no component of bulk shortening or transpression.  相似文献   

19.
Abstract In the Fleur de Lys Supergroup, western Newfoundland, inclusion trails in garnet and albite porphyroblasts indicate that porphyroblasts overgrew a crenulation foliation, without rotation, probably during the deformation event that produced the crenulations. Further deformation of the matrix resulted in strong re-orientation and retrograde metamorphism of the matrix foliation, which is consequently highly oblique to the crenulation foliation preserved in the porphyroblasts. The resulting matrix foliation locally preserves relics of the early crenulations, and also has itself been crenulated later in places. Thus the porphyroblasts grew before the later stages of deformation, rather than during the final stage, as had been suggested previously. The new interpretation is consistent with available 40Ar/39Ar cooling ages which indicate a late Ordovician-early Silurian metamorphic peak, rather than the Devonian peak suggested by previous workers. The inclusion patterns and microprobe data indicate normal outward growth of garnet porphyroblasts from a central nucleus, rather than as a series of veins as proposed by de Wit (1976a, b). However, the observations presented here support growth of porphyroblasts without rotation, which is implied by the de Wit model.  相似文献   

20.
Fan‐shaped polycrystalline staurolite porphyroblasts, 3–4 cm in length and 0.5 cm in width, occur together with centimetre‐sized euhedral prismatic staurolite porphyroblasts in pelitic schists of the Littleton Formation on the western overturned limb of the Bolton syncline in eastern Connecticut. The fans consist of intergrown planar splays of [001] elongated prisms, which are crudely radial from a single apex. The apical angles of the radial groupings range up to 70°. The orientations of the individual staurolite prisms are related by a rigid rotation about an axis perpendicular to the fan plane. The zone axes [001] always lie in the plane of the fan. Although the angle between the [100] zone axes of the individual prisms is uniform in each fan, it ranges from +30° to ?30° in different fans. Internally, the fans display: (i) remnants of a passively captured Si foliation defined by disc‐shaped quartz blebs (type 1 inclusions) and layers of very fine carbonaceous material and tabular ilmenite platelets; (ii) bent staurolite blades and undulose extinction along low‐angle (010) subgrain boundaries near the apex of the fans; (iii) wedge‐shaped dilatational zones containing equigranular inclusion‐free quartz, mica and staurolite, and (iv) growth‐related quartz inclusion trails roughly perpendicular to a crystal face (type 2 inclusions). The Si inclusion trails are typically perpendicular to the fan surface, radiate parallel to the blades, and show little to no curvature except at the very edge of the fans where they abruptly curve through nearly 90° into parallelism with an external Se foliation. Careful examination of the three‐dimensional geometry of fans based on U‐stage measurements, serial sections and two‐circle optical goniometric measurements permits a detailed reconstruction of their sequential development. The origin of a fan involves limited intracrystalline deformation and brittle crack dilation, spalling, rotation, and growth of small marginal fragments and of new staurolite along wedge‐shaped zones along the Si inclusion surfaces. Fans preferentially develop in porphyroblasts in which Si is subparallel to the 010 cleavage. These internal features reflect the rotation and deformation of a brittle porphyroblast relative to syn‐growth shear stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号