首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

2.
The Zagros fold-and-thrust belt of SW-Iran is among the youngest continental collision zones on Earth. Collision is thought to have occurred in the late Oligocene–early Miocene, followed by continental shortening. The High Zagros Belt (HZB) presents a Neogene imbricate structure that has affected the thick sedimentary cover of the former Arabian continental passive margin. The HZB of interior Fars marks the innermost part of SE-Zagros, trending NW–SE, that is characterised by higher elevation, lack of seismicity, and no evident active crustal shortening with respect to the outer (SW) parts. This study examines the brittle structures that developed during the mountain building process to decipher the history of polyphase deformation and variations in compressive tectonic fields since the onset of collision. Analytic inversion techniques enabled us to determine and separate different brittle tectonic regimes in terms of stress tensors. Various strike–slip, compressional, and tensional stress regimes are thus identified with different stress fields. Brittle tectonic analyses were carried out to reconstruct possible geometrical relationships between different structures and to establish relative chronologies of corresponding stress fields, considering the folding process. Results indicate that in the studied area, the main fold and thrust structure developed in a general compressional stress regime with an average N032° direction of σ1 stress axis during the Miocene. Strike–slip structures were generated under three successive strike–slip stress regimes with different σ1 directions in the early Miocene (N053°), late Miocene–early Pliocene (N026°), and post-Pliocene (N002°), evolving from pre-fold to post-fold faulting. Tensional structures also developed as a function of the evolving stress regimes. Our reconstruction of stress fields suggests an anticlockwise reorientation of the horizontal σ1 axis since the onset of collision and a significant change in vertical stress from σ3 to σ2 since the late stage of folding and thrusting. A late right-lateral reactivation was also observed on some pre-existing belt-parallel brittle structures, especially along the reverse fault systems, consistent with the recent N–S plate convergence. However, this feature was not reflected by large structures in the HZB of interior Fars. The results should not be extrapolated to the entire Zagros belt, where the deformation front has propagated from inner to outer zones during the younger events.  相似文献   

3.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

4.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

5.
Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike–slip faults (Mae Ping, Three Pagodas and Aliao Shan–Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike–slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene–Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene–Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene–Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene–Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike–slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.  相似文献   

6.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

7.
An earthquake swarm occurred during February and March 1997 in the vicinity of the Tancitaro Volcano, in the southern part of the tectonically complex Michoacan Triangle. A study of these events provides an opportunity to map the active faults in the area and to learn if the orientation and the sense of motion on these faults are consistent with the mapped faults and the alignment of cinder cones in the region. The foci of 230 earthquakes, which could be located, are distributed between 10 and 18 km depth, and show an alignment in, roughly, a NE direction. The focal mechanisms and seismic moments of the 27 best-recorded events were determined by waveform modeling of P and S waves. These mechanisms show two distinct patterns. More than 50% of the solutions are left-lateral strike–slip mechanisms with a normal component. The preferred fault plane strikes NE. Another group of events, probably caused by triggered seismicity on the Chapala–Oaxaca fault zone, shows left-lateral strike–slip mechanisms with a large-thrust component on NW-trending faults. S wave splitting shows 1–2.5% crustal-anisotropy. The direction of the anisotropy coincides with the NE alignment of events, and the preferred nodal plane. This is also the alignment of cinder cones, suggesting that preexisting fractures and cracks are responsible for the seismicity and anisotropic behavior of the crust. The resulting stress orientation, NE compression, is the one expected for the fore-arc region. We conclude that although Michoacan Triangle lies in the Trans-Mexican Volcanic Belt, it does not form part of this stress province where the stress orientation is NS extension.  相似文献   

8.
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo.The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map.The study area, during the Cenozoic, has been affected by five strike–slip tectonic events, which generated mainly strike–slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE–SW, E–W, NW–SE, N–S, and NNE–SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike–slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.  相似文献   

9.
Northern Apulia is an emerged portion of the Adriatic microplate, representing the foreland–foredeep area of a stretch of the Apennine chain in southern Italy. The interaction between the relatively rigid microplate and the contiguous more deformable domains is responsible for the intense seismicity affecting the chain area. However strong, sometimes even disastrous, earthquakes have also hit northern Apulia on several occasions. The identification of the causative faults of such events is still unclear and different hypotheses have been reported in literature. In order to provide guidelines and constraints in the search for these structures, a comprehensive re-examination and reprocessing of all the available seismic data has been carried out taking into consideration 1) the characteristics of historical events, 2) the accurate relocation of events instrumentally recorded in the last 20 years, 3) the determination of focal mechanisms and of the regional stress tensor.The results obtained bring to light a distinction between the foreland and foredeep areas. In the first region there is evidence of a regional stress combining NW compression and NE extension, thus structures responsible for major earthquakes should be searched for among strike–slip faults, possibly with a slight transpressive character. These structures could be either approximately N–S oriented sinistral or E–W dextral faults. In the foredeep region there is a transition toward transtensive mechanisms, with strikes similar to those of the previous zone, or maybe also towards NW oriented normal faults, more similar to those prevailing in the southern Apennine chain in relation to a dominant NE extension; this appears to be the effect of a reduction of the NW compression, probably due to a decrease in efficiency of stress transmission along the more tectonised border of the Adriatic microplate.  相似文献   

10.
Late Pliocene–Pleistocene tectonic evolution of the Apennines is driven by progressive eastward migration of extensional downfaulting superposed onto the Late Miocene–Early Pliocene compressional thrust belt. This process has led to distinct structural domains that show decreasing transcrustal permeability from conditions of pervasive mixing between deep and surface fluids in the hinterland (west) to conditions of restricted fluid circulation and overpressuring in the foreland (east). At present, the highest rates of normal faulting and the strongest seismicity occur in the area bounded by stretched, highly permeable crust to the west and thick, poorly permeable crust to the east. In this area, the seismogenic sources of the largest earthquakes (5<Ms<7) are potentially related to mature normal faults that deeply penetrate thick brittle upper crust, and act as transient high-permeability channels during seismic activity. In this framework, it is plausible that domains of overpressuring govern progressive inception of normal faulting and fluid redistribution in the crust, leading to eastward migration of the belt of maximum seismicity with time.  相似文献   

11.
In this study, we analyze the recent (1990–1997) seismicity that affected the northern sector (Sannio–Benevento area) of the Southern Apennines chain. We applied the Best Estimate Method (BEM), which collapses hypocentral clouds, to the events of low energy (Md max=4.1) seismic sequences in order to constrain the location and geometry of the seismogenetic structures. The results indicate that earthquakes aligned along three main structures: two sub-parallel structures striking NW–SE (1990–1992, Benevento sequence) and one structure striking NE–SW (1997, Sannio sequence). The southernmost NW–SE structure, which dips towards NE, overlies the fault that is likely to be responsible for a larger historical earthquake (Io max=XI MCS, 1688 earthquake). The northernmost NW–SE striking structure dips towards SW. The NE–SW striking structure is sub-vertical and it is located at the northern tip of the fault segment supposed to be responsible for the 1688 earthquake. The spatio-temporal evolution of the 1990–1997 seismicity indicates a progressive migration from SE (Benevento) to NW (Sannio) associated to a deepening of hypocenters (i.e., from about 5 to 12 km). Hypocenters cluster at the interface between the major structural discontinuities (e.g., pre-existing thrust surfaces) or within higher rigidity layers (e.g., the Apulia carbonates). Available focal mechanisms from earthquakes occurred on the recognized NW–SE and NE–SW faults are consistent with dip-slip normal solutions. This evidences the occurrence of coexisting NW–SE and NE–SW extensions in Southern Apennines.  相似文献   

12.
We conducted a seismic tomographic analysis to estimate the crustal structure beneath the Shikoku and Chugoku regions in Japan. The Philippine Sea slab (PHS slab) subducts continuously in a SE–NW direction beneath this region, and the crustal structure is complex. Furthermore, the Median Tectonic Line (MTL), one of the longest and most active arc-parallel fault systems in Japan (hereafter, the MTL active fault system), is located in this area, and the right-lateral strike–slip movement of this fault system is related to the oblique subduction of the PHS slab. The MTL active fault system has ruptured repeatedly during the last 10 000 years, and has high seismic potential. Our tomographic analysis clarified the heterogeneous crustal structure along the MTL active fault system. This fault system in Shikoku can be divided into two segments, an east segment and a west segment, on the basis of the velocity structure. This segmentation model is consistent with other such models that have been determined from geological and geomorphological data such as fault geometry, slip rate, and faulting history. This consistency suggests that the surface characteristics of the MTL active fault system are related to structural properties of the crust. In particular, a prominent low-velocity (low-V) zone is present in the lower crust beneath the east segment. Our tomographic images show that the lower crust structure beneath the east segment is obviously different from that of the other segment. Furthermore, this low-V zone may indicate the presence of fluid, possibly related to dehydration of the PHS slab. As the presence of fluid in the lower crust affects the activity of the fault, stress accumulation and the fault failure mechanism may differ between the two segments of the MTL active fault system.  相似文献   

13.
A set of 41 focal mechanisms (1989–2006) from P-wave first polarities is computed from relocated seismic events in the Giudicarie–Lessini region (Southern Alps). Estimated hypocentral depths vary from 3.1 to 20.8 km, for duration magnitudes (MD) in the range 2.7–5.1. Stress and strain inversions are performed for two seismotectonic zones, namely G (Giudicarie) and L (Lessini). This subdivision is supported by geological evidence, seismicity distribution, and focal mechanism types. The available number of data (16 in G, 22 in L) does not make possible any further subdivisions. Seismotectonic zones G and L are undergoing different kinematic regimes: thrust with strike-slip component in G, and strike-slip in L. Principal stress and strain axes in each sub-region show similar orientations. The direction of maximum horizontal compressive stress is roughly perpendicular to the thrust fronts along the Giudicarie Belt in zone G, and compatible with right-lateral strike-slip reactivation of the faults belonging to the Schio-Vicenza system in zone L. On the whole, kinematic regimes and horizontal stress orientations show a good fit with other stress data from focal mechanisms and breakouts and with geodetic strain rate axes.  相似文献   

14.
This paper shows a new continuous strain–stress map for Europe obtained from the direct inversion of earthquake focal mechanisms calculated from the centroid tensor method. A total of 1608 focal mechanisms have been selected with several quality criteria from different catalogues (CMT Harvard, ETH, Med-Net, I.G.N. and I.A.G.) from 1973 to the present day. Values for the maximum horizontal shortening direction and brittle strain–stress regime defined by the k′ ratio (ey/ez, horizontal maximum/vertical strain) have been calculated following in Europe and Pannonian Basin the slip model of tri-axial deformation. The individual results including Dey and the shape of the active brittle strain ellipsoid have been interpolated to a final 15′ regular grid taking into account the relationship between the tectonic horizontal strain–stress value and the vertical load. Both continuous strain regime and maximum horizontal shortening (Dey) maps show a good correlation with the primary tectonic forces generated along the plate boundaries, plate kinematics and also some local perturbations related with main crustal heterogeneities and topography, as well as significant spatial variations in integrated crustal strength.  相似文献   

15.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

16.
Systematic inversion of double couple focal mechanisms of shallow earthquakes in the northern Andes reveals relatively homogeneous patterns of crustal stress in three main regions. The first region, presently under the influence of the Caribbean plate, includes the northern segment of the Eastern Cordillera of Colombia and the western flank of the Central Cordillera (north of 4°N). It is characterized by WNW–ESE compression of dominantly reverse type that deflects to NW–SE in the Merida Andes of Venezuela, where it becomes mainly strike–slip in type. A major bend of the Eastern thrust front of the Eastern Cordillera, near its junction with the Merida Andes, coincides with a local deflection of the stress regime (SW–NE compression), suggesting local accommodation of the thrust belt to a rigid indenter in this area. The second region includes the SW Pacific coast of Colombia and Ecuador, currently under the influence of the Nazca plate. In this area, approximately E–W compression is mainly reverse in type. It deflects to WSW–ENE in the northern Andes south of 4°N, where it is accommodated by right-lateral displacement of the Romeral fault complex and the Eastern front of the northern Andes. The third, and most complex, region is the area of the triple junction between the South American, Nazca and Caribbean plates. It reveals two major stress regimes, both mainly strike–slip in type. The first regime involves SW–NE compression related to the interaction between the Nazca and Caribbean plates and the Panama micro-plate, typically accommodated in an E–W left-lateral shear zone. The second regime involves NW–SE compression, mainly related to the interaction between the Caribbean plate and the North Andes block which induces left-lateral displacement on the Uramita and Romeral faults north of 4°N.Deep seismicity (about 150–170 km) concentrates in the Bucaramanga nest and Cauca Valley areas. The inversion reveals a rather homogeneous attitude of the minimum stress axis, which dips towards the E. This extension is consistent with the present plunge of the Nazca and Caribbean slabs, suggesting that a broken slab may be torn under gravitational stresses in the Bucaramanga nest. This model is compatible with current blocking of the subduction in the western northern Andes, inhibiting the eastward displacement of slabs, which are forced to break and sink in to the asthenosphere under their own weight.  相似文献   

17.
The co-seismic deformations produced during the September 27, 2003 Chuya earthquake (Ms = 7.5) that affected the Gorny Altai, Russia, are described and discussed along a 30 km long segment. The co-seismic deformations have manifested themselves both in unconsolidated sediments as R- and R′-shears, extension fractures and contraction structures, and in bedrock as the reactivation of preexisting schistosity zones and individual fractures, as well as development of new ruptures and coarse crushing zones. It has been established that the pattern of earthquake ruptures represents a typical fault zone trending NW–SE with a width reaching 4–5 km and a dextral strike–slip kinematics. The initial stress field that produced the whole structural pattern of co-seismic deformations during the Chuya earthquake, is associated with a transcurrent regime with a NNW–SSE, almost N–S, trending of compressional stress axis (σ1), and a ENE–WSW, almost E–W, trending of tensional stress axis (σ3). The state of stress in the newly-formed fault zone is relatively uniform. The local stress variations are expressed in insignificant deviation of σ1 from N–S to NW–SE or NE–SW, in short-term fluctuations of relative stress values in keeping their spatial orientations, or in a local increase of the plunge angle of the σ1. The geometry of the fault zone associated with the Chuya earthquake has been compared with the mechanical model of fracturing in large continental fault zones with dextral strike–slip kinematics. It is apparent that the observed fracture pattern corresponds to the late disjunctive stage of faulting when the master fault is not fully developed but its segments are already clearly defined. It has been shown that fracturing in widely different rocks follows the common laws of the deformation of solid bodies, even close to the Earth surface, and with high rates of movements.  相似文献   

18.
We applied a tomographic method to image an aseismic strike–slip fault in North Morocco and found that the occurrence of earthquakes is not only controlled by the state of tectonic stress but also by material heterogeneity in the crust. We have constructed an integrated model of seismic, electric, magnetic and heat flow properties across northeastern Morocco primarily based on a tomography inversion of local earthquake arrival times. The seismic images obtained show a pronounced low-velocity zone at 5 km depth parallels to the Nekor fault, coinciding with an anomalously high conductive and low gravity structure, which is interpreted as a fault gouge zone and/or a fluid-filled subsurface rock matrix. Below 10 km depth, a weak positive velocity zone indicates that the fault gouge is stable. The seismicity and the seismic velocity results for the Al-Hoceimas region show that the concentrations of earthquakes are confined in the high velocity area. This anomaly is interpreted to be a brittle and competent layer of the upper crust that sustains seismogenic stress. On the eastern coast line of Morocco, we infer that a high density, high velocity body exists in the shallowest layers of the upper crust, probably formed by Miocene volcanic rocks.  相似文献   

19.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   

20.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号