首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Addressing the challenges of global warming requires interventions on both the energy supply and demand side. With the supply side responses being thoroughly discussed in the literature, our paper focuses on analyzing the role of end use efficiency improvements for Indian climate change mitigation policy and the associated co-benefits, within the integrated assessment modeling framework of Global Change Assessment Model (GCAM). Six scenarios are analyzed here in total- one no climate policy and two climate policy cases, and within each of these one scenario with reference end use energy technology assumptions and another with advance end use energy technology assumptions has been analyzed. The paper has some important insights. Final energy demand and emissions in India are significantly reduced with energy efficiency improvements, and the role of this policy is important especially for the building and transportation sector under both reference and climate policy scenarios. Though energy efficiency policy should be an integral part of climate policy, by itself it is not sufficient for achieving mitigation targets, and a climate policy is necessary for achieving mitigation goals. There are significant co-benefits of energy efficiency improvements. Energy security for India is improved with reduced oil, coal and gas imports. Significant reduction in local pollutant gases is found which is important for local health concerns. Capital investment requirement for Indian electricity generation is reduced, more so for the climate policy scenarios, and finally there are significant savings in terms of reduced abatement cost for meeting climate change mitigation goals.  相似文献   

2.
Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.  相似文献   

3.
Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However, these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes in precipitation will reduce runoff, decrease hydropower production (with accompanying increases in thermal generation), and increase irrigation water use, while higher temperatures will shift power demand from winter to summer months. The combined impact of these effects will generally make it more challenging to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands.  相似文献   

4.
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2 °C, followed by stabilisation to 4 °C.  相似文献   

5.
Major transformation of the global energy system is required for climate change mitigation. However, energy demand patterns and supply systems are themselves subject to climate change impacts. These impacts will variously help and hinder mitigation and adaptation efforts, so it is vital they are well understood and incorporated into models used to study energy system decarbonisation pathways. To assess the current state of understanding of this topic and identify research priorities, this paper critically reviews the literature on the impacts of climate change on the energy supply system, summarising the regional coverage of studies, trends in their results and sources of disagreement. We then examine the ways in which these impacts have been represented in integrated assessment models of the electricity or energy system.Studies tend to agree broadly on impacts for wind, solar and thermal power stations. Projections for impacts on hydropower and bioenergy resources are more varied. Key uncertainties and gaps remain due to the variation between climate projections, modelling limitations and the regional bias of research interests. Priorities for future research include the following: further regional impact studies for developing countries; studies examining impacts of the changing variability of renewable resources, extreme weather events and combined hazards; inclusion of multiple climate feedback mechanisms in IAMs, accounting for adaptation options and climate model uncertainty.  相似文献   

6.
Climate change tends to negatively affect the power sector, inter alia, by causing cooling problems in power plants and impairing the water supply required for hydropower generation. In the future, when global warming is expected to increase, autonomous adaptation to climate change via international electricity markets inducing reallocations of power generation may not be sufficient to prevent supply disruptions anymore. Furthermore, the consequent changes of supply patterns and electricity prices might cause an undesirable redistribution of wealth both between individual power suppliers and between suppliers and consumers. This study ascertains changes in European power supply patterns and electricity prices caused by on-going global warming as well as the associated redistribution of wealth for different climate change scenarios. The focus of the analysis is on short-term effects. Our results confirm that autonomous adaptation in the power sector should be complemented by planned public adaptation in order to preserve energy security and to prevent undesired distributional effects.  相似文献   

7.
Thermoelectric generation contributes to 80% of global electricity production. Cooling of thermoelectric plants is often achieved by water abstractions from the natural environment. In England and Wales, the electricity sector is responsible for approximately half of all water abstractions and 40% of non-tidal surface water abstractions. We present a model that quantifies current water use of the UK electricity sector and use it to test six decarbonisation pathways to 2050. The pathways consist of a variety of generation technologies, with associated cooling methods, water use factors and cooling water sources. We find that up to 2030, water use across the six pathways is fairly consistent and all achieve significant reductions in both carbon and water intensity, based upon a transition to closed loop and hybrid cooling systems. From 2030 to 2050 our results diverge. Pathways with high levels of carbon capture and storage result in freshwater consumption that exceeds current levels (37–107%), and a consumptive intensity that is 30–69% higher. Risks to the aquatic environment will be intensified if generation with carbon capture and storage is clustered. Pathways of high nuclear capacity result in tidal and coastal abstraction that exceed current levels by 148–399%. Whilst reducing freshwater abstractions, the marine environment will be impacted if a shortage of coastal sites leads to clustering of nuclear reactors and concentration of heated water discharges. The pathway with the highest level of renewables has both lowest abstraction and consumption of water. Freshwater consumption can also be minimised through use of hybrid cooling, which despite marginally higher costs and emissions, would reduce dependence on scarce water resources thus increase security of supply.  相似文献   

8.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

9.
The nuclear energy response for mitigating global climate change across 18 participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0–66 EJ/year and 0–25 % in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90 % capacity factor) and median share of 9 %. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90 % capacity factor) and share of 17 % in 2100. The broad range of nuclear electricity generation (11–214 EJ/year) and shares (2–38 %) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.  相似文献   

10.

Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025–2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  相似文献   

11.
Impact of climate change on Pacific Northwest hydropower   总被引:2,自引:0,他引:2  
The Pacific Northwest (PNW) hydropower resource, central to the region’s electricity supply, is vulnerable to the impacts of climate change. The Northwest Power and Conservation Council (NWPCC), an interstate compact agency, has conducted long term planning for the PNW electricity supply for its 2005 Power Plan. In formulating its power portfolio recommendation, the NWPCC explored uncertainty in variables that affect the availability and cost of electricity over the next 20 years. The NWPCC conducted an initial assessment of potential impacts of climate change on the hydropower system, but these results are not incorporated in the risk model upon which the 2005 Plan recommendations are based. To assist in bringing climate information into the planning process, we present an assessment of uncertainty in future PNW hydropower generation potential based on a comprehensive set of climate models and greenhouse gas emissions pathways. We find that the prognosis for PNW hydropower supply under climate change is worse than anticipated by the NWPCC’s assessment. Differences between the predictions of individual climate models are found to contribute more to overall uncertainty than do divergent emissions pathways. Uncertainty in predictions of precipitation change appears to be more important with respect to impact on PNW hydropower than uncertainty in predictions of temperature change. We also find that a simple regression model captures nearly all of the response of a sequence of complex numerical models to large scale changes in climate. This result offers the possibility of streamlining both top-down impact assessment and bottom-up adaptation planning for PNW water and energy resources.  相似文献   

12.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   

13.
本文利用2015—2017年溪洛渡电站逐日入库及出库流量、逐日电站出力资料、广东逐日用电负荷数据及NCEP逐日再分析资料,针对溪洛渡右岸电站汛期弃水严重、枯期水量不足,电站发电与广东用电需求存在矛盾的几种生产情景,划分为供不应求型、供过于求型和非典型供过于求型3种类型,选取典型个例分析不同类型对应的环流形势和天气成因,并提出今后溪洛渡电站调度的建议。结果表明:每年5、6月,广东常受副热带高压控制,用电需求较大,而宜宾以上流域大多受一致的偏西或西南暖湿气流控制,冷空气活动较弱,不利于产生大范围降水,使得溪洛渡电站发电能力与广东用电需求多呈供不应求型;7—9月,宜宾以上流域多受高原槽及切变线影响,有利于出现明显降水,电站具备满发能力,而华南一般有低涡切变或台风活动,有利于广东出现降水,由于不受副高控制且出现降水,广东用电需求降低,导致出现供过于求型;如广东在副热带高压控制之下,用电需求旺盛,但溪洛渡右岸具备满发能力而出现弃水的情景,往往是因为西南地区降水总体较强,其他水电站加大出力,而电网送出受限等多方面因素影响,导致电网对溪洛渡右岸的电能需求减少,即出现非典型供过于求型。在实际发电生产中可根据天气环流形势提前研判,更加有针对性地开展水库调度、优化电站运行,增加汛期水电电能的有效消纳以及水能资源充分利用。  相似文献   

14.
Climate change will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate change on heating and cooling demands requires taking into account not only the manner in which the building sector might evolve over time, but also important uncertainty about the nature of climate change itself. In this study, we explore the uncertainty in climate change impacts on heating and cooling requirement by constructing estimates of heating and cooling degree days (HDD/CDDs) for both reference (no-policy) and 550 ppmv CO2 concentration pathways built from three different Global Climate Models (GCMs) output and three scenarios of gridded population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China are then explored by using the results of HDD/CDDs as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). The results across the modeled changes in climate and population distributions indicate that unabated climate change would cause building sector’s final energy consumption to decrease modestly (6 % decrease or less depending on climate models) in both the U.S. and China by the end of the century as decreased heating consumption more than offsets increased cooling using primarily electricity. However, global climate change virtually has negligible effect on total CO2 emissions in the buildings sector in both countries. The results also indicate more substantial implications for the fuel mix with increases in electricity and decreases in other fuels, which may be consistent with climate mitigation goals. The variation in results across all scenarios due to variation of population distribution is smaller than variation due to the use of different climate models.  相似文献   

15.
The availability of electric power is an important prerequisite for the development or maintenance of high living standards. Global change, including socio-economic change and climate change, is a challenge for those who have to deal with the long-term management of thermoelectric power plants. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short and medium term. In the long term, the water demand will change as old units are retired and new generating units are built. The present paper analyses the effects of global change and options for adapting to water shortages for power plants in the German capital Berlin in the short and long term. The interconnection between power plants, i.e. water demand, and water resources management, i.e. water availability, is described. Using different models, scenarios of socio-economic and climate change are analysed. One finding is that by changing the cooling system of power plants from a once-through system to a closed-circuit cooling system the vulnerability of power plants can be reduced considerably. Such modified cooling systems also are much more robust with respect to the effects of climate change and declining streamflows due to human activities in the basin under study. Notwithstanding the possible adaptations analysed for power plants in Berlin, increased economic costs are expected due to declining streamflows and higher water temperatures.  相似文献   

16.
What is a low-carbon pathway? To many, it is a way of mitigating climate change. To others, it is about addressing market failure or capturing the co-benefits attached to low-carbon systems, such as jobs or improved health. To still others, it represents building adaptive capacity and resilience in the face of climate change. However, these interpretations can fail to acknowledge how pathways of low-carbon transitions can also become intertwined with processes and structures of inequality, exclusion and injustice. Using a critical lens that draws from a variety of disciplines, this article explores three ways through which responses to climate change can entrench, exacerbate or reconfigure the power of elites. As society attempts to create a low-carbon society, including for example via coastal protection efforts, disaster recovery, or climate change mitigation and renewable energy, these efforts intersect with at least three processes of elite power: experimentation, financialisation, and dispossession. Experimentation is when elites use the world as a laboratory to test or pilot low-carbon technologies or policy models, transferring risks yet not always sharing benefits. Financialisation refers to the expansion and proliferation of finance, capital, and financial markets in the global economy and many national economies, processes of which have recently extended to renewable energy. Dispossession is when elites use decarbonisation as a process through which to appropriate land, wealth, or other assets (and in the process make society more majoritarian and/or unequal). We explore these three themes using a variety of evidence across illustrative case studies, including hard and soft coastal protection measures (Bangladesh, Netherlands), climate risk insurance (Malawi), and renewable energy auctions and associated mechanisms of finance and investment (South Africa and Mexico).  相似文献   

17.
Today’s climate policies will shape the future trajectory of emissions. Consumption is the main driver behind recent increases in global greenhouse gas emissions, outpacing savings through improved technologies, and therefore its representation in the evidence base will impact on the success of policy interventions. The IPCC’s Special Report on Global Warming of 1.5 °C (SR1.5) summarises global evidence on pathways for meeting below-2 °C targets, underpinned by a suite of scenarios from integrated assessment models (IAMs). We explore how final energy demand is framed within these, with the aim to making demand-related assumptions more transparent, and evaluating their significance, feasibility, and use or underutilisation as a mitigation lever. We investigate how the integrated assessment models compensate for higher and lower levels of final energy demand across scenarios, and how this varies when mitigating for 2 °C and 1.5 °C temperature targets through an analysis of (1) final energy demand projections, (2) energy-economy relationships and (3) differences between energy system decarbonisation and carbon dioxide removal in the highest and lowest energy demand pathways. We look across the full suite of mitigation pathways and assess the consequences of achieving different global carbon budgets. We find that energy demand in 2100 in the highest energy demand scenarios is approximately three to four times higher than the lowest demand pathways, but we do not find strong evidence that 1.5 °C-consistent pathways cluster on the lower end of demand levels, particularly when they allow for overshoot. The majority of demand reductions happen pre-2040, which assumes absolute decoupling from economic growth in the near-term; thereafter final energy demand levels generally grow to 2100. Lower energy demand pathways moderately result in lower renewable energy supply and lower energy system investment, but do not necessarily reduce reliance on carbon dioxide removal. In this sense, there is more scope for IAMs to implement energy demand reduction as a longer-term mitigation lever and to reduce reliance on negative emissions technologies. We demonstrate the need for integrated assessments to play closer attention to how final energy demand interacts with, relates to, and can potentially offset supply-side characteristics, alongside a more diverse evidence base.  相似文献   

18.
Climate change: impacts on electricity markets in Western Europe   总被引:1,自引:0,他引:1  
This paper studies some impacts of climate change on electricity markets, focusing on three climate effects. First, demand for electricity is affected because of changes in the temperature. Second, changes in precipitation and temperature have impact on supply of hydro electric production through a shift in the inflow of water. Third, plant efficiency for thermal generation will decrease because the temperature of water used to cool equipment increases. To find the magnitude of these partial effects, as well as the overall effects, on Western European energy markets, we use the multi-market equilibrium model LIBEMOD. We find that each of the three partial effects changes the average electricity producer price by less than 2%, while the net effect is an increase of only 1%. The partial effects on total electricity supply are small, and the net effect is a decrease of 4%. The greatest effects are found for Nordic countries with a large market share for reservoir hydro. In these countries, annual production of electricity increases by 8%, reflecting more inflow of water, while net exports doubles. In addition, because of lower inflow in summer and higher in winter, the reservoir filling needed to transfer water from summer to winter is drastically reduced in the Nordic countries.  相似文献   

19.
Social, economic, and environmental systems can be vulnerable to disruptions in water supplies that are likely to accompany future climate changes. Coupled with the challenges of tightening environmental regulations, population growth, economic development and fiscal constraints water supply systems are being pushed beyond the limits of their design and capacity for maintenance. In this paper we briefly review key economic concepts, various economic measures and metrics, and methods to estimate the economic effects on water resources from water supply changes that could accompany climate change. We survey some of the recent empirical literature that focuses on estimates developed for U.S. watersheds at both national and regional scales. Reported estimates of potential damage and loss associated with climate and water supply changes that we observe are significant, though often the metrics vary and make valid and consistent direct cross-comparisons difficult. Whether in terms of changes in GDP or in terms of estimated changes in economic welfare based on associated changes in economic costs and benefits, both national and regional estimates suggest that governments and organizations incorporate prudent steps to assess vulnerabilities to plausible future water supply and demand scenarios and develop responsive adaptation strategies.  相似文献   

20.
This study uses a well-established water balance methodology to evaluate the relative impact of global warming and soil degradation due to desertification on future African water resources. Using a baseline climatology, a GCM global warming scenario, a newly derived soil water-holding capacity data set, and a worldwide survey of soil degradation between 1950 and 1980, four climate and soil degradation scenarios are created to simulate the potential impact of global warming and soil degradation on African water resources for the 2010–2039 time period. Results indicate that, on a continental scale, the impact of global warming will be significantly greater than the impact of soil degradation. However, when only considering the locations where desertification is an issue (wet and dry climate regions), the potential effects of these two different human impacts on local water resources can be expected to be on the same order of magnitude. Drying associated with global warming is primarily the result of increased water demand (potential evapotranspiration) across the entire continent. While there are small increases in precipitation under global warming conditions, they are inadequate to meet the increased water demand. Soil degradation is most severe in highly populated, wet and dry climate regions and results in decreased water-holding capacities in these locations. This results in increased water surplus conditions during wet seasons when the soil's ability to absorb precipitation is reduced. At the same time, water deficits in these locations increase because of reduced soil water availability in the dry seasons. The net result of the combined scenarios is an intensification and extension of drought conditions during dry seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号