首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effects of climate on numbers of northern prairie wetlands   总被引:4,自引:1,他引:4  
The amount of water held in individual wetland basins depends not only on local climate patterns but also on groundwater flow regime, soil permeability, and basin size. Most wetland basins in the northern prairies hold water in some years and are dry in others. To assess the potential effect of climate change on the number of wetland basins holding water in a given year, one must first determine how much of the variability in number of wet basins is accounted for by climatic variables. I used multiple linear regression to examine the relationship between climate variables and percentage of wet basins throughout the Prairie Pothole Region of Canada and the United States. The region was divided into three areas: parkland, Canadian grassland, and United States grassland (i.e., North Dakota and South Dakota). The models - which included variables for spring and fall temperature, yearly precipitation, the previous year's count of wet basins, and for grassland areas, the previous fall precipitation - accounted for 63 to 65% of the variation in the number of wet basins. I then explored the sensitivities of the models to changes in temperature and precipitation, as might be associated with increased greenhouse gas concentrations. Parkland wetlands are shown to be much more vulnerable to increased temperatures than are wetlands in either Canadian or United States grasslands. Sensitivity to increased precipitation did not vary geographically. These results have implications for waterfowl and other wildlife populations that depend on availability of wetlands in the parklands for breeding or during periods of drought in the southern grasslands.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

2.
利用区域气候模式RegCM3以及考虑作物生长过程的耦合模式RegCM3_CERES对东亚区域进行20年模拟,研究作物生长对流域水文过程与区域气候的影响。结果表明:考虑作物生长过程的耦合模式模拟海河流域、松花江流域、珠江流域多年平均降水效果明显改进,在除黑河流域外的各流域模拟的温度负偏差有所减小,其中在海河流域、淮河流域的夏季改进尤为明显。各流域夏季(6、7、8月)月蒸散量最高,其中长江流域、海河流域、淮河流域、珠江流域的夏季月蒸散量基本上在100 mm左右,并且七大流域蒸散发的季节变化趋势跟总降水基本一致。多数流域考虑作物生长过程的耦合模式模拟得出蒸散发减少且进入的水汽增加,导致局地水循环率减小;黑河流域与黄河流域降水有所增加,其他流域均有不同程度的减小。针对长江流域,比较耦合模式RegCM3_CERES与模式RegCM3模拟结果显示,叶面积指数减少1.20 m2/m2,根区土壤湿度增加0.01 m3/m3,进而导致潜热通量下降1.34 W/m2(其中在四川盆地地区减少16.00 W/m2左右),感热通量增加2.04 W/m2,从而影响到降水和气温。  相似文献   

3.
This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.  相似文献   

4.
Using China as a case study, a methodology is presented to estimate the changes in yields and costs of present and future water production systems under climate change scenarios. Yield is important to consider because it measures the actual supply available from a river basin. Costs are incurred in enhancing the natural yield of river basins by the construction and operation of reservoirs and ground water pumping systems. The interaction of ground and surface waters within a river basin and instream flow maintenance are also modeled. The water demands considered are domestic, irrigation, and instream flow needs. We found that under climate change the maximum yields of some basins in China may increase or decrease, depending upon location, and that in some basins it may cost significantly more or it may not be possible to meet the demands. While our results for China could be improved with more hydrologic and economic data, we believe that the cost curves developed have suitable accuracy for initial analysis of water supply costs in Integrated Assessment Models.  相似文献   

5.
California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300–2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300–2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.  相似文献   

6.
The Advanced Regional Prediction System (ARPS) is coupled with the tropical town energy budget (tTEB) scheme to analyze the effects of the urban canopy circulation over the metropolitan area of São Paulo and its interactions with the sea breeze and mountain-valley circulation in the eastern state of São Paulo, Brazil. Two experiments are carried out for the typical sea-breeze event occurring on 22 August 2014 under weak synoptic forcing and clear-sky conditions: (a) a control run with the default semi-desert surface parametrization and; (b) a tTEB run for the urban canopy of São Paulo. A realistic land-use database over the south-eastern domain of Brazil is used in the downscaling simulation to a horizontal grid resolution of 3 km. Our results indicate that ARPS effectively simulates features of the nighttime and early morning land-breeze circulation, which is affected by the surrounding hills and the nocturnal heat island of São Paulo. By early afternoon, the south-eastern sea-breeze circulation moves inland perpendicular to the upslope of the Serra do Mar scarp, which generates a line of moisture convergence and updrafts further inland. Later, the convergence line reaches São Paulo and interacts with the circulation arising from the urban heat island (UHI), which increases the moisture convergence and strength of updrafts. The surface energy balance indicates that the UHI is caused by large sensible heat storage within the urban canopy during the day, which is later released in the afternoon and at night. The simulations are verified with available radiosonde and surface weather station data, land-surface-temperature estimates from the moderate resolution imaging spectroradiometer, as well as the National Center for Atmospheric Research reanalysis databases. The three-dimensional geometry of the urban canyons within the tTEB scheme consistently improves the thermodynamically-induced circulation over São Paulo.  相似文献   

7.
Experiments with the coupled climate model CLIMBER-3α, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation.  相似文献   

8.
Various frameworks related to climate change and adaptations that have been developed to date have notable benefits as well as significant limitations. It is not always practical to implement advanced climate change frameworks in situations with limited data availability. Social aspects, such as people’s experience and perception, are often under-prioritized. Therefore, this study introduces an integrated framework linking social and physical aspects of climate change to assess its impacts on water resources and to evaluate differing adaptation options in poorly gauged basins. A case study of the Kali Gandaki River Basin (KGRB) in western Nepal is presented to demonstrate the applicability of this framework. Results of the study show that people of the mountainous Mustang district in the KGRB have perceived climate change or climate variability, its impacts on water resources, as well as other water-related issues and potential adaptations or responses. Furthermore, evaluation of people’s perception using available physical data confirms the increase in temperature and average annual discharge in the Kali Gandaki River as well as poor water use, as a major problem at all levels in the basin. Despite increasing water availability, a concurrent increase in water use is difficult due to topographic constraints on irrigation development. However, the impacts of climate change are particularly severe in Mustang, owing to the fact that a large proportion of the population depends on a climate-sensitive livelihood like agriculture. Therefore, various adaptation options are identified in the agricultural sector, and one relevant option is further evaluated. The framework developed in this study has the potential to be further applied to other poorly gauged basins.  相似文献   

9.
It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate elements.This study investigates the linkage between EP/CP El Ni?o and summer streamflow over the Yellow and Yangtze River basins and their possible mechanisms.Over the Yellow River basin,the anomalous streamflow always manifests as positive(negative)in EP(CP)years,with a correlation coefficient of 0.39(-0.37);while over the Yangtze River basin,the anomalous streamflow shows as positive in both EP and CP years,with correlation coefficients of 0.72 and 0.48,respectively.Analyses of the surface hydrological cycle indicate that the streamflow is more influenced by local evapotranspiration(ET)than precipitation over the Yellow River basin,while it is dominantly affected by precipitation over the Yangtze River basin.The different features over these two river basins can be explained by the anomalous atmospheric circulation,which is cyclonic(anticyclonic)north(south)of 30°N over East Asia.EP years are dominated by two anticyclones,which bring strong water vapor convergence and induce more precipitation but less ET,and subsequently increase streamflow and flooding risks.In CP years,especially over the Yellow River basin,two cyclones dominate and lead to water vapor divergence and reduce moisture arriving.Meanwhile,the ET enhances mainly due to local high surface air temperature,which further evaporates water from the soil.As a result,the streamflow decreases,which will then increase the drought risk.  相似文献   

10.
This study decribes two numerical models used to compute tidal wave propagation in shallow water basins of limited size. The wave acts as a boundary condition to excite a response in the basin. Atmospheric driving forces such as wind and pressure gradient are not considered.The models integrate hydrodynamical equations describing water motions inside basins subjected to tidal waves from the open sea. Two hypotheses for the basin depths are considered: the first model considers depths that vary in space but not in time, the second considers depths that vary in space and time.The numerical models simulate the propagation of tidal waves from the open sea into shallow water basins approximating the lagoon of Venice.Computed values from the two models, when compared with observational data collected in the past, show acceptable agreement.  相似文献   

11.
Significant positive trends are found in the evolution of daily rainfall extremes in the city of São Paulo (Brazil) from 1933 to 2010. Climatic indices including ENSO, PDO, NAO and the sea surface temperature at the coast near São Paulo explain 85 % of the increasing frequency of extremes during the dry season. During the wet season the climatic indices and the local sea surface temperature explain a smaller fraction of the total variance when compared to the dry season indicating that other factors such as the growth of the urban heat island and the role of air pollution in cloud microphysics need to be taken into account to explain the observed trends over the almost eight decades.  相似文献   

12.
River discharge forms a major freshwater input into the Arctic Ocean, and as such it has the potential to influence the oceanic circulation. As the hydrology of Arctic river basins is dominated by cryospheric processes such as snow accumulation and snowmelt, it may also be highly sensitive to a change in climate. Estimating the water balance of these river basins is therefore important, but it is complicated by the sparseness of observations and the large uncertainties related to the measurement of snowfalls. This study aims at simulating the water balance of the Barents Sea drainage basin in Northern Europe under present and future climate conditions. We used a regional climate model to drive a large-scale hydrological model of the area. Using simulated precipitation derived from a climate model led to an overestimation of the annual discharge in most river basins, but not in all. Under the B2 scenario of climate change, the model simulated a 25% increase in freshwater runoff, which is proportionally larger than the projected precipitation increase. As the snow season is 30–50 day shorter, the spring discharge peak is shifted by about 2–3 weeks, but the hydrological regime of the rivers remains dominated by snowmelt.  相似文献   

13.
This study examines the sensitivity of a mid-size basin’s temperature and precipitation response to different global and regional climate circulation patterns. The implication of the North Atlantic Oscillation (NAO), El Ni?o Southern Oscillation (ENSO), Indian Monsoon and ten other teleconnection patterns of the Northern Hemisphere are investigated. A methodology to generate a basin-scale, long-term monthly surface temperature and precipitation time series has been established using different statistical tests. The Litani River Basin is the focus of this study. It is located in Lebanon, east of the Mediterranean Basin, which is known to have diverse geophysical and environmental characteristics. It was selected to explore the influence of the diverse physical and topographical features on its hydroclimatological response to global and regional climate patterns. We also examine the opportunity of conducting related studies in areas with limited long-term measured climate and/or hydrological data. Litani's monthly precipitation and temperature data have been collected and statistically extrapolated using remotely sensed data products from satellites and as well as in situ gauges. Correlations between 13 different teleconnection indices and the basin’s precipitation and temperature series are investigated. The study shows that some of the annual and seasonal temperature and precipitation variance can be partially associated with many atmospheric circulation patterns. This would give the opportunity to relate the natural climate variability with the watershed’s hydroclimatology performance and thus differentiate it from other anthropogenic induced climate change outcomes.  相似文献   

14.
California mountain streams provide critical water resources for human supplies and aquatic ecosystems, and have been affected by climatic changes to varying degrees, often within close proximity. The objective of this study is to examine stream flow timing changes and their climatic drivers through 2009, identify sub-regional patterns in response and sensitivity, and explore whether the differences in the sensitivity of a stream to climatic changes can be partially explained through the physical characteristics of a watershed. To this end, changes in streamflow timing for each watershed were assessed through several runoff timing measures, and overall sensitivity to historic climatic changes through a composite sensitivity index. Elevation, aspect, slope, geology, and landcover distributions, as well as climate information were assembled for each watershed; and were analyzed in conjunction with the sensitivity index. Results showed that the basins most sensitive to climatic changes are on the western Sierra Nevada slopes, while eastern and southern Sierra Nevada, as well as Klamath mountain watersheds exhibit little or no response to climatic shifts to date. Basin sensitivity was not found to be connected to any individual physical watershed characteristic other than elevation. However, it is suggested that basin-to-basin differences in sensitivity, observed in spite of regional-scale warming and similar watershed elevations, can be explained by differences in elevation ranges and combinations of physical watershed characteristics. Results about stream differences in climate sensitivity could aid in prioritizing stream preservation efforts.  相似文献   

15.
Climate change due to a doubling of the carbon dioxide in the atmosphere and its possible impacts on the hydrological cycle are a matter of growing concern. Hydrologists are specifically interested in an assessment of the impacts on the occurrence and magnitude of runoff, evapotranspiration, and soil moisture and their temporal and spatial redistribution. Such impacts become all the more important as they may also affect the water availability in the storage reservoirs. This paper examines the regional effects of climate change on various components of the hydrologic cycle viz., surface runoff, soil moisture, and evapotranspiration for three drainage basins of central India. Plausible hypothetical scenarios of precipitation and temperature changes are used as input in a conceptual rainfall-runoff model. The influences of climate change on flood, drought, and agriculture are highlighted. The response of hypothetical reservoirs in these drainage basins to climate variations has also been studied. Results indicate that the basin located in a comparatively drier region is more sensitive to climatic changes. The high probability of a significant effect of climate change on reservoir storage, especially for drier scenarios, necessitates the need of a further, more critical analysis of these effects.  相似文献   

16.
Climate Change and Water Resources   总被引:13,自引:1,他引:13  
Current perspectives on global climate change based on recent reports of the Intergovernmental Panel on Climate Change (IPCC) are presented. Impacts of a greenhouse warming that are likely to affect water planning and evaluation include changes in precipitation and runoff patterns, sea level rise, land use and population shifts following from these effects, and changes in water demands. Irrigation water demands are particularly sensitive to changes in precipitation, temperature, and carbon dioxide levels. Despite recent advances in climate change science, great uncertainty remains as to how and when climate will change and how these changes will affect the supply and demand for water at the river basin and watershed levels, which are of most interest to planners. To place the climate-induced uncertainties in perspective, the influence on the supply and demand for water of non-climate factors such as population, technology, economic conditions, social and political factors, and the values society places on alternative water uses are considered.  相似文献   

17.
Detection of effects of changing climate on the hydrologic responses of rivers can be further complicated by changes in land use, drainage, and water use. To discern effects of human-caused changes in a basin and those due to precipitation over time, a comparison was made of annual mean flows and peakflows in Midwestern basins that experienced increases in annual precipitation and heavy rain events during 1940–1990. Two pairs of basins, one pair in a rural area and one pair in an urbanized area, were selected for in-pair comparisons, with one basin in each pair experiencing more land use and drainage changes during 1940–1990 than the other basin. All basins experienced significant upward trends in annual precipitation and annual mean flows. Human-produced changes affecting runoff in both rural basins accounted for about two-thirds of the fluctuations in the mean flows, and precipitation changes accounted for the other third. However, much of the change in peakflows in the rural basin undergoing sizable changes in drainage was due to these changes (85%) versus 75% in the rural basin without comparable shifts in drainage. The mean and peak flows of the two urban basins showed considerably more response to precipitation shifts than those of the two rural basins. The urbanized area doubled within one urban basin during 1940–1990, and these land use changes explained much more of the increase in mean flows and peakflows there than in the urban basin with less change in land use. By 1990 precipitation accounted for 69% of the upward trend in mean flows since 1941 in the heavily developed urban basin, as compared to 37% of the trend in the less settled urban basin. For purposes of assessing climate change, the precipitation changes over fifty years in all basins produced marked uptrends in basin streamflow, but the magnitude of the precipitation effect was masked by the land use and drainage changes. The results illustrate the need for careful analysis of natural basin characteristics (soils and basin shape), land use and drainage changes, and of various precipitation conditions if the influence of shifting precipitation on hydrologic conditions is to be detected, accurately measured, and correctly interpreted. For such studies the paired basin comparison techniques appears to be a valuable approach.  相似文献   

18.
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling results indicate that climate change will alter both the timing and quantity of streamflow, but understanding how these changes will impact different water users is essential to facilitate adaptation to changing conditions. In order to better understand the vulnerability of four water use sectors to changing streamflow, we conducted a series of semi-structured interviews with representatives of each sector, in which we presented projected changes in streamflow and asked respondents to assess how changing water availability would impact their activities. In the McKenzie River watershed, there are distinct spatial and temporal patterns associated with sensitivity of water resources to climate change. This research illustrates that the implications of changing streamflow vary substantially among different water users, with vulnerabilities being determined in part by the spatial scale and timing of water use and the flexibility of those uses in time and space. Furthermore, institutions within some sectors were found to be better positioned to effectively respond to changes in water resources associated with climate change, while others have substantial barriers to the flexibility needed to manage for new conditions. A clearer understanding of these opportunities and constraints across water use sectors can provide a basis for improving response capacity and potentially reducing vulnerability to changing water resources in the region.  相似文献   

19.
This study evaluated the effects of climate change on sugarcane yield, water use efficiency, and irrigation needs in southern Brazil, based on downscaled outputs of two general circulation models (PRECIS and CSIRO) and a sugarcane growth model. For three harvest cycles every year, the DSSAT/CANEGRO model was used to simulate the baseline and four future climate scenarios for stalk yield for the 2050s. The model was calibrated for the main cultivar currently grown in Brazil based on five field experiments under several soil and climate conditions. The sensitivity of simulated stalk fresh mass (SFM) to air temperature, CO2 concentration [CO2] and rainfall was also analyzed. Simulated SFM responses to [CO2], air temperature and rainfall variations were consistent with the literature. There were increases in simulated SFM and water usage efficiency (WUE) for all scenarios. On average, for the current sugarcane area in the State of São Paulo, SFM would increase 24 % and WUE 34 % for rainfed sugarcane. The WUE rise is relevant because of the current concern about water supply in southern Brazil. Considering the current technological improvement rate, projected yields for 2050 ranged from 96 to 129 t?ha?1, which are respectively 15 and 59 % higher than the current state average yield.  相似文献   

20.
Changes in spatio-temporal rainfall patterns have an effect on the hydrological behavior of river basins, the magnitude of the effects depending among others on the physiographic basin characteristics. To assess climate and discharge fluctuations, a visualization tool was developed as a contribution to exploratory data analysis. The tool combined statistical tests of hydro-climatological variables with physiographic basin characteristics. Test results agree with previous studies and suggested a relationship between rainfall, discharge and mean date of the annual maximum discharge on the one the hand and lithology, altitude and west to east positioning of the basins on the other hand. The visualization tool capable of combining the statistical test results with the geologic and topographic configuration of the study area and allowed a reflection on the hydro-climatological as well as spatio-temporal behavior of meso-scale basins by means of exploratory data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号