首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

2.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

3.
The pattern of climate change in the Southern Hemisphere during the Younger Dryas (YD) chronozone provides essential constraint on mechanisms of abrupt climate change only if accurate, high-precision chronologies are obtained. A climate reversal reported previously at Kaipo bog, New Zealand, had been dated between 13,600 and 12,600 cal yr B.P. and appeared to asynchronously overlap the YD chron, but the chronology, based on conventionally radiocarbon-dated bulk sediment samples, left the precise timing questionable. We report a new high-resolution AMS 14C chronology for the Kaipo record that confirms the original chronology and provides further evidence for a mid-latitude Southern Ocean cooling event dated between 13,800 and 12,400 cal yr B.P. (2σ range), roughly equivalent to the Antarctic Cold Reversal.  相似文献   

4.
Pollen evidence from a 350-cm section of a fen in a moraine belt at Rucañancu (39°33′S, 72°18′W) bears on the controversy regarding interpretation of late-glacial and Holocene climate in midlatitude Chile. Earlier pollen studies, indicating a cooling trend between approximately 11,000 and 10,000 yr B.P., disagreed with observations of glacier fluctuations which show continuous glacier wastage and, by inference, warming after 12,500 yr B.P. and possibly earlier, up until Neoglaciation, beginning after 6850 yr B.P. Fossil beetle assemblage data in this time range support the interpretation of climate made from the observed glacier behavior. At Rucañancu, a pollen assemblage containing upper montane podocarp (Podocarpus andinus) in quantities reaching 34% and dating between 10,440 and 10,000 yr B.P. implies a cold climate with summer temperatures possibly 5–8°C lower than today's. Holocene warming began afterward, later than the glacier and beetle records indicate, and continued until at least 8350 yr B.P., as suggested by the sequence of assemblages dominated by Myrtaceae, by Aextoxicon punctatum, and by Gramineae. A subsequent assemblage of Nothofagus obliqua type implies an increase of moisture until 6960 yr B.P., following which N. dombeyi type, under a cool and humid Neoglacial climate, became dominant.  相似文献   

5.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

6.
Data from a transect of four cores collected in the Makepeace Cedar Swamp, near Carver, Massachusetts, record past changes in deposition, vegetation, and water level. Time series of palynological data provide a 14,000-yr record of regional and local vegetation development, a means for biostratigraphic correlation and dating, and information about changes in water level. Differences in records among cores in the basin show that water level decreased at least 1.5 m between 10,800 and 9700 cal yr B.P., after which sediment accumulation was slow and intermittent across the basin for about 1700 yr. Between 8000 and 5600 cal yr B.P., water level rose 2.0 m, after which slow peat accumulation indicates a low stand about the time of the hemlock decline at 5300 ± 200 cal yr B.P. Dry conditions may have continued after this time, but by 3200 cal yr B.P., the onset of peat accumulation in shallow cores indicates that water level had risen to close to its highest postglacial level, where it is today. Peat has accumulated across the whole basin since 3200 cal yr B.P. Data from Makepeace and the Pequot Cedar Swamp, near Ledyard, Connecticut, indicate an early Holocene dry interval in southern New England that began 11,500 yr ago near the end of the Younger Dryas interval. The dry conditions prevailed between 10,800 and 8000 cal yr B.P. and coincide with the arrival and later rise to dominance of white pine trees (Pinus strobus) both regionally and near the basins. Our results indicate a climatic cause for the “pine period” in New England.  相似文献   

7.
Pollen data from Lake Maliq, the first from Albania, contribute new information to the discussion of the vegetational, hydrological, and climatological history of the Balkans since 12,000 yr B.P. During late-glacial time, a perennial lake expanded at Maliq. It was surrounded by a complex vegetation association composed of steppe and mixed forest elements. The highly diverse forest flora suggest that late-glacial forest refugia were more developed here at middle altitude, rather than at higher altitude as previously suggested. The forest developed after 9800 yr B.P., while the water level remained high in the Korçë basin until 5000 yr B.P. Different environmental conditions, characterized by lower available moisture and warmer winters, progressively took place after this date. Human activity in the Korçë basin ca. 4500 yr B.P. was coeval with conditions characterized by an increase in winter temperatures and a decrease in summer moisture.  相似文献   

8.
A new and significant site of organic silty sand has been found beneath the Valders till at Valders Quarry in northeastern Wisconsin. This is now the earliest known late-glacial site associated with red till ice advances in the western Great Lakes area. Leaves of terrestrial plants washed into a small depression provide a date of 12,965 ± 200 yr B.P. (WIS-2293), which is significantly older than the Two Creeks Forest Bed (ca. 11,800 yr B.P.). Percentage and concentration pollen diagrams suggest that the site was open and distant from a closedPiceaforest. No wood orPiceaneedles have been found. This date is statistically indistinguishable from 12,550 ± 233 yr B.P., the mean of three dates for the end of inorganic varve sedimentation at Devils Lake, 160 km southwest at the terminus of the Green Bay Lobe. Assuming that the Green Bay lobe vacated its outermost moraine in the interval from 13,000 to 12,500 yr B.P., only a short time was available for retreat of the ice margin over 350 km, drainage of red sediment from Lake Superior into the Lake Michigan basin, readvance of over 250 km, retreat of at least 80 km, and advance to this site. The time for these events appears to have been too short to resolve by current radiocarbon technique. This extremely rapid collapse of the Green Bay lobe has a calibrated age of about 15,000 cal yr B.P., about that of the dramatic warming seen in the Greenland ice cores.  相似文献   

9.
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce (Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple (Acer saccharum) and birch (Betula spp.), and rare fragments of pine (Pinus cf. strobus) and white cedar (Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.  相似文献   

10.
A 7.6-m core recovered from Lough Inchiquin, western Ireland provides evidence for rapid and long-term climate change from the Late Glacial period to the Mid-Holocene. We determined percentage of carbonate, total organic matter, mineralogy, and δ18Ocalcite values to provide the first high-resolution record of climate variability for this period in Ireland. Following deglaciation, rapid climate amelioration preceded large increases in GISP2 δ18Oice values by ∼2300 yr. The Oldest Dryas (15,100 to 14,500 cal yr B.P.) Late Glacial event is documented in this record as a decrease in δ18Ocalcite values. Brief warming at ∼12,700 cal yr B.P. was followed by characteristic Younger Dryas cold and dry climate conditions. A rapid increase in δ18Ocalcite values at ∼10,500 cal yr B.P. marked the onset of Boreal warming in western Ireland. The 8200 cal yr B.P. event is represented by a brief cooling in our record. Prior to general warming, a larger and previously undescribed climate anomaly between 7300 and 6700 cal yr B.P. is characterized by low δ18Ocalcite values with high-frequency variability.  相似文献   

11.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

12.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

13.
High-resolution macroscopic charcoal analysis was used to reconstruct a 14,300-year-long fire history record from the lower Columbia River Valley in southwestern Washington, which was compared to a previous vegetation reconstruction for the site. In the late-glacial period (ca. 14,300-13,100 cal yr BP), Pinus/Picea-dominated parkland supported little to no fire activity. From the late-glacial to the early Holocene (ca. 13,100-10,800 cal yr BP), Pseudotsuga/Abies-dominated forest featured more frequent fire episodes that burned mostly woody vegetation. In the early to middle Holocene (ca. 10,800-5200 cal yr BP), Quercus-dominated savanna was associated with frequent fire episodes of low-to-moderate severity, with an increased herbaceous (i.e., grass) charcoal content. From the middle to late Holocene (ca. 5200 cal yr BP to present), forest dominated by Pseudotsuga, Thuja-type, and Tsuga heterophylla supported less frequent, but mostly large or high-severity fire episodes. Fire episodes were least frequent, but were largest or most severe, after ca. 2500 cal yr BP. The fire history at Battle Ground Lake was apparently driven by climate, directly through the length and severity of the fire season, and indirectly through climate-driven vegetation shifts, which affected available fuel biomass.  相似文献   

14.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

15.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

16.
Kylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin.  相似文献   

17.
This paper presents the first unambiguous terrestrial palaeoecological record for the late glacial “Bølling warming” in Denmark. Pollen and macrofossil stratigraphies from pre-Bølling to 10,800 cal yr BP are presented from a small kettle hole in Southwest Denmark, during which the lake basin developed from an immature stage after the deglaciation to complete infilling in the early Holocene. Results show that the recently deglaciated landscape bore a discontinuous vegetation of pioneer plants. After the Bølling warming, an open Dryas octopetala-Betula nana community developed with Helianthemum oelandicum. Subarctic species were dominant and local successions were probably delayed by relatively unstable and infertile soils. There is no indication of a climate cooling during the period corresponding to the Older Dryas, but the occurrence of several drought tolerant and steppe species indicates that the period was relatively dry. In the Allerød period the Dryas-B. nana vegetation was initially replaced by an open Salix and grass dominated vegetation and some 400 years later, the first tree birches were documented presumably occupying moist and sheltered soils while drier land remained open. In the Younger Dryas period trees disappeared and the vegetation became open again and dominated by subarctic species. Following climate warming at the Younger Dryas–Holocene transition a shrub community of Empetrum and Juniperus developed. After approximately 200 years it was replaced by birch forest. Overall, the late-glacial vegetation cover had a more open and patchy character than inferred from previous pollen studies as assessment of the vegetation succession based on macrofossil evidence is essential. The inferred general vegetation development corresponds well with results of other studies in the region. Canonical ordinations (RDA) indicate that vegetation changes at the landscape scale during the Lateglacial period were driven by changes in climate, soils and competition for light.  相似文献   

18.
We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine-freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P.. Within this period, meltwater pulse IA (mwp IA, between c. 14,600-14,200 and 14,100-13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570-7270 and 7250-6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250-6950 and 2847-2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.  相似文献   

19.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   

20.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号